I. Объяснение нового материала.



О симметрии в пространстве учащиеся могут прочитать самостоятельно (п. 35).

Далее ввести понятие правильного многогранника. (Рассматривая куб, правильный тетраэдр, правильный октаэдр и т. д., учащиеся отвечают на вопрос: по каким признакам можно объединить данные многогранники?) Установить вместе с учащимися, сколько может быть видов правильных многогранников?

Пусть при одной вершине сходится n ребер, тогда плоских углов при этой вершине будет тоже n, причем они все равны между собой. Пусть один из этих плоских углов равен х, тогда сумма плоских углов при вершине nx, и по свойству плоских углов многогранного угла получим nx < 360°, откуда x < (1).

Угол правильного n-угольника равен α = (2).

I. Таблица значений

II. Таблица значений

  3 4 5 6 7   3 4 5 6
120° 90° 72° 60° ≈ 51° 60° 90° 108° 120°

Начиная с n = 7 плоский угол станет меньше 60°, а такого правильного многоугольника не существует, поэтому остальные случаи рассматривать не будем.

I. Грани правильного многогранника – правильные треугольники, тогда α = 60° (таблица II).

1) 60° ∙ 3 = 180° < 360°.

В этом случае правильный многогранник имеет 4 грани и называется правильным тетраэдром.

2) 60° ∙ 4 = 240° < 360°.

В этом случае правильный многогранник имеет 8 граней и называется правильным октаэдром.

3) 60° ∙ 5 = 300° < 360°.

В этом случае правильный многогранник имеет 20 граней и называется правильным икосаэдром.

4) 60° ∙ 6 = 360°, это противоречит теореме о сумме плоских углов многогранного угла. Следовательно, больше правильных многогранников, грани которых – правильные треугольники, не существует.

II. Грани правильного многогранника – правильные четырехугольники (квадраты),тогда α = 90° (таблица II).

1) 90° ∙ 3 = 270° < 360°.

В этом случае правильный многогранник имеет 6 граней и называется правильным гексаэдром (кубом).

2) 90° ∙ 4 = 360°, следовательно, больше правильных многогранников, грани которых – квадраты, не существует.

III. Грани правильного многогранника – правильные пятиугольники; α = 108°.

1) 108° ∙ 3 = 324° < 360°.

В этом случае правильный многогранник имеет 12 граней, и называется правильным додекаэдром.

2) 108° ∙ 4 > 360°, следовательно, больше правильных многогранников, грани которых – правильные пятиугольники, не существует.

IV. Начиная с правильного шестиугольника α ≥ 120° (таблица II).

Следовательно, nα > 360° (n ≥ 3), поэтому правильных многогранников, грани которых – многоугольники с числом сторон больше 5, не существует.

Во время беседы демонстрировать модели правильных многогранников, показывать рисунки (есть в параграфе).

Последний пункт объяснения нового материала – элементы симметрии правильных многогранников.

II. Решение задач: №№ 279, 280, 281, 282, 287.

Домашнее задание: теория (п. 35–37), №№ 283, 285, 286.

Урок 12
ПОДГОТОВКА К КОНТРОЛЬНОЙ РАБОТЕ

Ход урока

Вариант I

1. В основании прямого параллелепипеда ABCDA1B1C1D1 лежит ромб ABCD со стороной а, и углом BAD, равным 60°. Плоскость ВС1D составляет с плоскостью основания угол 60°. Найдите площадь полной поверхности параллелепипеда.

2. В основании пирамиды DABC лежит прямоугольный треугольник АВС, С = 90°, А = 30°, ВС = 10. Боковые ребра пирамиды равно наклонены к плоскости основания. Высота пирамиды равна 5. Найдите площадь боковой поверхности пирамиды.

3*. В указанной выше  пирамиде найдите угол между прямыми АС и BD.

Вариант II

1. Основанием прямого параллелепипеда служит параллелограмм со сторонами 3 см и 5 см. Острый угол параллелограмма равен 60°. Площадь большего диагонального сечения равна 63 см2. Найдите площадь полной поверхности параллелепипеда.

2. Основанием пирамиды MABCD служит ромб ABCD, АС = 8; BD = 6. Высота пирамиды равна 1. Все двугранные углы при основании равны. Найдите площадь полной поверхности пирамиды.

3*. В указанной выше пирамиде найдите угол между гранями ВМС и DMC.

Вариант III

1. В основании прямого параллелепипеда ABCDA1B1C1D1 лежит параллелограмм ABCD, у которого BD  АВ; AB = 3 см; BD = 4 см. Плоскость АВ1С1 составляет с плоскостью основания угол 45°. Найдите площадь полной поверхности параллелепипеда.

2. В основании пирамиды MABCD лежит квадрат ABCD со стороной, равной 12. Грани МВА и МВС перпендикулярны к плоскости основания. Высота пирамиды равна 5. Найдите площадь полной поверхности пирамиды.

3*. В указанной выше пирамиде найдите расстояние между прямыми ВС и MD.

Вариант IV

1. В прямом параллелепипеде ABCDA1B1C1D1 основанием служит параллелограмм ABCD, AD = 2, DC = 2 , А = 30°. Большая диагональ составляет с плоскостью основания угол 45°. Найдите площадь боковой поверхности параллелепипеда.

2. Основанием пирамиды МАВС служит прямоугольный треугольник АВС, катеты которого АС = 8 см, ВС = 6 см. Высота пирамиды равна 3 см. Двугранные углы при основании пирамиды равны между собой. Найдите площадь полной поверхности пирамиды.

3*. В указанном выше параллелепипеде найдите угол между А1С и плоскостью грани DD1C1C.

Домашняя контрольная работа

Вариант I

1. Сторона основания правильной четырехугольной призмы ABCDA1B1C1D1 равна 4 см, а боковое ребро – 5 см. Найдите площадь сечения, которое проходит через ребро АА1 и вершину С.

2. В правильной треугольной призме сторона основания равна 3 см, а диагональ боковой грани составляет с плоскостью основания угол 60°. Площадь боковой поверхности призмы равна…

3. В наклонном параллелепипеде основанием служит квадрат. Две противоположные боковые грани перпендикулярны к плоскости основания. Все ребра параллелепипеда равны 4 см. Найдите площадь каждой из наклонных боковых граней.

4. В наклонной треугольной призме ABCA1B1C1 основанием служит правильный треугольник со стороной, равной а. Боковое ребро равно b, А1АС = А1АВ. Площадь грани СС1В1В равна…

5. В наклонной треугольной призме боковое ребро равно 10 см. Площади двух боковых граней равны 30 см2 и 40 см2, угол между ними прямой. Площадь боковой поверхности призмы равна…

6. В правильной четырехугольной пирамиде угол между диагональю основания и скрещивающимся с ней боковым ребром равен…

7. В правильной четырехугольной пирамиде угол между противоположными боковыми гранями равен 40°. Найдите угол наклона боковых граней к плоскости основания.

8. Основанием пирамиды служит треугольник со стороной, равной 8 см, и противолежащим углом 150°. Боковые ребра наклонены к основанию под углом 45°. Высота пирамиды равна…

9. Основанием пирамиды служит трапеция, основания которой равны 2 см и 8 см. Боковые грани пирамиды равно наклонены к плоскости основания. Высота одной из боковых граней равна 10 см. Найдите площадь боковой поверхности пирамиды.

10. В пирамиде MABCD основанием служит квадрат со стороной, равной а. Грань МАВ – правильный треугольник, плоскость которого перпендикулярна к плоскости основания. Площади граней MAD и МВС равны…

Вариант II

1. Сторона основания правильной четырехугольной призмы ABCDA1B1C1D1 равна 3 см, а боковое ребро – 4 см. Найдите площадь сечения, которое проходит через сторону основания АD и вершину С1.

2. В правильной треугольной призме боковое ребро равно 4 см, а диагональ боковой грани составляет с плоскостью основания угол 45°. Площадь боковой поверхности призмы равна…

3. В наклонном параллелепипеде основанием служит квадрат. Две противоположные боковые грани перпендикулярны к плоскости основания. Все ребра параллелепипеда равны между собой. Площадь наклонной боковой грани равна 25 см2. Длина ребра параллелепипеда равна…

4. Основанием наклонного параллелепипеда ABCDA1B1C1D1 служит квадрат со стороной, равной а. Боковое ребро равно b. Вершина А1 равноудалена от всех вершин нижнего основания. Площадь диагонального сечения ВВ1D1D равна…

5. В наклонной треугольной призме боковое ребро равно 5 см. Площади двух боковых граней равны 20 см2, угол между ними – 60°. Площадь боковой поверхности призмы равна…

6. В правильной треугольной пирамиде угол между скрещивающимися ребрами равен…

7. В правильной четырехугольной пирамиде боковые грани наклонены к основанию под углом 50°. Угол между противоположными боковыми гранями пирамиды равен…

8. В пирамиде основанием служит треугольник со стороной 6 см и противолежащим углом 30°. Боковые ребра наклонены к основанию под углом 60°. Длина бокового ребра равна…

9. Основанием пирамиды служит трапеция, боковые стороны которой равны 2 см и 4 см. Боковые грани пирамиды равно наклонены к плоскости основания. Высота одной из боковых граней равна 5 см. Найдите площадь боковой поверхности пирамиды.

10. В пирамиде MABCD основанием служит квадрат со стороной, равной 6 см. Ребро МВ перпендикулярно к плоскости основания. Равные боковые ребра равны 8 см. Площадь наклонных боковых граней равна…

Урок 13
КОНТРОЛЬНАЯ РАБОТА № 4

Вариант I

1. Основанием пирамиды DABC является правильный треугольник АВС, сторона которого равна а. Ребро DA перпендикулярно к плоскости АВС, а плоскость DBC составляет с плоскостью АВС угол в 30°. Найдите площадь боковой поверхности пирамиды.

2. Основанием прямого параллелепипеда ABCDA1B1C1D1 является ромб ABCD, сторона которого равна а и угол равен 60°. Плоскость AD1C1 составляет с плоскостью основания угол в 60°. Найдите:

а) высоту ромба;

б) высоту параллелепипеда;

в) площадь боковой поверхности параллелепипеда;

г) площадь поверхности параллелепипеда.

Вариант II

1. Основанием пирамиды MABCD является квадрат ABCD, ребро MD перпендикулярно к плоскости основания, AD = DM = a. Найдите площадь поверхности пирамиды.

2. Основанием прямого параллелепипеда ABCDA1B1C1D1 является параллелограмм ABCD, стороны которого равны а и 2а, острый угол равен 45°. Высота параллелепипеда равна меньшей высоте параллелограмма. Найдите:

а) меньшую высоту параллелограмма;

б) угол между плоскостью АВС1 и плоскостью основания;

в) площадь боковой поверхности параллелепипеда;

г) площадь поверхности параллелепипеда.

 


Дата добавления: 2018-09-20; просмотров: 1033; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!