Формула Муавра и извлечение корней из комплексных чисел



Эта формула позволяет возводить в целую степень ненулевое комплексное число, представленное в тригонометрической форме. Формула Муавра имеет вид:

где — модуль, а — аргумент комплексного числа. В современной символике она опубликована Эйлером в 1722 году. Приведенная формуле справедлива при любом целом n, не обязательно положительном.

Аналогичная формула применима также и при вычислении корней -ой степени из ненулевого комплексного числа:

Отметим, что корни -й степени из ненулевого комплексного числа всегда существуют, и их количество равно . На комплексной плоскости, как видно из формулы, все эти корни являются вершинами правильного -угольника, вписанного в окружность радиуса с центром в начале координат (см. рисунок).

Матрицы: определение, арифметика матриц. Связь матриц и систем линейных

Уравнений.

Ма́трица — совокупность строк и столбцов, на пересечении которых находятся её элементы. Количество строк и столбцов матрицы задают размер матрицы.

Матрицей называется прямоугольная таблица чисел, состоящая из m одинаковой длины строк или n одинаковой длины стробцов.

Матрица – прямоугольная таблица, предполагающая выполнение арифметических действий.

Арифметика матриц:

1) сложение (Складываются матрицы только одного размера)

 

2)умножение матрицы на число:

 

3) Умножение матриц (перемножать матрицы можно только тогда, когда длина строки первой матрицы равна высоте столбцов второй матрицы.)

Умножается «строка» на «столбец» так же как скалярно перемножаются два вектора.

Связь матриц и систем линейных уравнений

Алгебраические свойства матриц. Понятие обратной матрицы. Применение

Обратных матриц к решению систем линейных уравнений.

Матричные операции

Сложение и вычитание допускается только для матриц одинакового размера.

Существует нулевая матрица такая, что её прибавление к другой матрице A не изменяет A, то есть

Все элементы нулевой матрицы равны нулю.

Возводить в степень можно только квадратные матрицы.

  • Ассоциативность сложения:
  • Коммутативность сложения:
  • Ассоциативность умножения:
  • Вообще говоря, умножение матриц некоммутативно: . Используя это свойство, вводят коммутатор матриц.
  • Дистрибутивность умножения относительно сложения:

  • С учётом упомянутых выше свойств, матрицы образуют кольцо относительно операций сложения и умножения.
  • Свойства операции транспонирования матриц:

, если обратная матрица существует.

Обра́тная ма́трица — такая матрица A−1, при умножении на которую исходная матрица A даёт в результате единичную матрицу E:

Квадратная матрица обратима тогда и только тогда, когда она невырожденная, то есть её определитель не равен нулю. Для неквадратных матриц и вырожденных матриц обратных матриц не существует. Однако возможно обобщить это понятие и ввести псевдообратные матрицы, похожие на обратные по многим свойствам.

Решение систем линейных алгебраических уравнений матричным методом (с помощью обратной матрицы).
Пусть система линейных алгебраических уравнений задана в матричной форме , где матрица A имеет размерность n на n и ее определитель отличен от нуля.

Так как , то матрица А – обратима, то есть, существует обратная матрица . Если умножить обе части равенства на слева, то получим формулу для нахождения матрицы-столбца неизвестных переменных . Так мы получили решение системы линейных алгебраических уравнений матричным методом.

 


Дата добавления: 2019-09-13; просмотров: 224; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!