Достаточное условие вогнутости ( выпуклости ) функции.



Пусть функция f ( x ) дважды дифференцируема ( имеет вторую производную ) на интервале ( a, b ), тогда:

если f '' ( x ) > 0 для любого x ( a, b ), то функция f ( x ) является вогнутой на интервале ( a, b );

если f '' ( x ) < 0 для любого x ( a, b ), то функция f ( x ) является выпуклой на интервале ( a, b ) .

Точка, при переходе через которую функция меняет выпуклость на вогнутость или наоборот, называется точкой перегиба. Отсюда следует, что если в точке перегиба x0 существует вторая производная f '' ( x0 ), то f '' ( x0 ) = 0.

П р и м е р. Рассмотрим график функции y = x3 :

 

Эта функция является вогнутой при x > 0 и выпуклой при x < 0. Тогда x = 0 является точкой перегиба функции y = x3.

Асимптоты графика и функции.

Асимптота — прямая, обладающая тем свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность.

Прямая называется вертикальной асимптотой графика функции , если хотя бы одно из предельных значений или равно или .

Замечание. Прямая не может быть вертикальной асимптотой, если функция непрерывна в точке . Поэтому вертикальные асимптоты следует искать в точках разрыва функции.

Прямая называется горизонтальной асимптотой графика функции , если хотя бы одно из предельных значений или равно .

Замечание. График функции может иметь только правую горизонтальную асимптоту или только левую.

Прямая называется наклонной асимптотой графика функции , если

Дифференциал функции. Применение дифференциала в приближенных вычислениях.

Дифференциал (от лат. differentia — разность, различие) — линейная часть приращения функции.

Обычно дифференциал функции обозначается .

Дифференциал в точке обозначается , а иногда или , а также , если значение ясно из контекста.

Соответственно, значение дифференциала в точке от может обозначаться как , а иногда или , а также , если значение ясно из контекста.

Приращение функции представимо в виде:

где функция является бесконечно малой функцией при стремлении аргумента к нулю. Так как , то

В силу того, что второе слагаемое является бесконечно малым, то им можно пренебречь, а поэтому

А так как в нахождении дифференциал значительно проще, чем приращение функции, то данная формула активно используется на практике.

Для приближенного вычисления значения функции применяется следующая формула:

Первообразная функции. Таблица интегралов.

Первообрзной данной функции называют такую , производная которой (на всей области определения) равна , то есть . Вычисление первообразной заключается в нахождении неопределённого интеграла, а сам процесс называется интегрированием.

Первообразные важны тем, что позволяют вычислять интегралы. Если — первообразная интегрируемой функции , то:

 

Таблица интегралов

 


Дата добавления: 2019-09-13; просмотров: 169; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!