Математическая формулировка первого закона термодинамики



Количество теплоты, которое подводится к системе, расходуется на совершение данной системой работы (против внешних сил) и изменение ее внутренней энергии. В интегральном виде:

ΔQ =ΔU+A

гдеΔQ– количество теплоты, которое получает термодинамическая система;ΔU– изменение внутренней энергии рассматриваемой системы; A – работа, которую выполняет система над внешними телами (против внешних сил).

В дифференциальном виде:

δQ = dU+ δA

где δQ – элемент количества теплоты, который получает система; δA – бесконечно малая работа, которую выполняет термодинамическая система; dU – элементарное изменение внутренней энергии, рассматриваемой системы. Следует обратить внимание на то, что в формуле элементарное изменение внутренней энергии является полным дифференциаломdU, в отличие от δQ и δA.

Применение первого закона термодинамики к изолированной системе, изотермическому, адиабатическому, изохорному и изобарным процессам. Связь между внутренней энергией и энтальпией.

При изохорном процессеобъем газа не меняется и поэтому работа газа равна нулю. Изменение внутренней энергии равно количеству переданной теплоты:

При изотермическом процессе внутренняя энергия идеального газа не меняется. Все переданное газу количество теплоты идет на совершение работы:

При изобарном процессе передаваемое газу количество теплоты идет на изменение его внутренней энергии и на совершение работы при постоянном давлении.

Qp= ΔU + PΔV; H = ΔU + PΔV; Qp= H

Адиабатный процесс– процесс в теплоизолированной системе. Следовательно, изменение внутренней энергии при адиабатном процессе происходит только за счет совершении работы:

Так как работа внешних сил при сжатии положительна, внутренняя энергия газа при адиабатном сжатии увеличивается, а его температура повышается.При адиабатном расширении газ совершает работу за счет уменьшения своей внутренней энергии, поэтому температура газа при адиабатном расширении понижается.

Закон Гесса и его следствия.

Закон Гесса (закон постоянства суммы теплот реакции) :

Тепловой эффект химической реакции определяется только природой и состоянием исходных веществ и продуктов, но не зависит от промежуточных химических реакций, т.е. от способа перехода от исходного состояния в конечное.

В термохимических расчетах обычно используют ряд следствий из закона Гесса:

1. Тепловой эффект прямой реакции равен по величине и противоположен по знаку тепловому эффекту обратной реакции (закон Лавуазье – Лапласа).

2. Для двух реакций, имеющих одинаковые исходные, но разные конечные состояния, разность тепловых эффектов представляет собой тепловой эффект перехода из одного конечного состояния в другое.

С + О2 ––> СО + 1/2 О2 ΔН1

С + О2 ––> СО2 ΔН2

СО + 1/2 О2 ––> СО2 ΔН3

3. Для двух реакций, имеющих одинаковые конечные, но разные исходные состояния, разность тепловых эффектов представляет собой тепловой эффект перехода из одного исходного состояния в другое.

С(алмаз) + О2 ––> СО2 ΔН1

С(графит) + О2 ––> СО2 ΔН2

С(алмаз) ––> С(графит) ΔН3

4. Тепловой эффект химической реакции равен разности сумм теплот образования продуктов реакции и исходных веществ, умноженных на стехиометрические коэффициенты.

ΔН=∑ΔНпрод.-∑ ΔН исх.

5. Тепловой эффект химической реакции равен разности сумм теплот сгорания исходных веществ и продуктов реакции, умноженных на стехиометрические коэффициенты.

ΔН=∑ΔНсгор.исх.-∑ ΔНсгор.прод.


Дата добавления: 2018-02-28; просмотров: 966; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!