Годовое изменение параметров Земли 27 страница



Волна, вызываемая самопульсацией Земли, объемна. Ее часть, идущая в сторону от Солнца (в направлении F 3), будет давать Земле дополнительный импульс, «прижимая» ее к Солнцу. Такой же импульс она получа­ет и от волн, движущихся по направлению ее движения по орбите и против этого направления. То есть с двух сторон по орбите возникают одинаковые взаимопогашающие силы F 2 = F 4 , и, следовательно, Земля тоже должна оставаться на месте.

Это в случае ее неподвиж­ности относительно Солнца. В случае ее движения энер­гия волн самопульсации по направлению движения боль­ше, чем поперек его. Но и в этом случае сила F 1 , обра­зуемая по направлению дви­жения, равна силе F 4, на­правленной в противопо­ложную сторону. А потому кажется, даже без учета со­протии-вления эфира, что пла­нета не может двигаться за счет отталкивания от про­странства. И все же она дви­жется. Более того, образует в направлении движения впереди «себя», как уже упоминалось, бегущую удар­ную сфе- Рис. 86.                        рическую волну, «сминающую» и уплотняю­щую эфирное пространство перед движущимся телом и замедляя течение времени в уплотнённом пространстве. (Образуя своего рода сферическую стенку плотности.). Похоже, что это «смятое» вещественное пространство и становится основным элементом, обеспечивающим движение небесного тела в пространстве. Плотность «ударной» волны оказывается такой величины, что становится непреодолимой для набегающей на нее от тела (Земли, в частности) электромагнитной волны самопульсации. Более того, набежавшая волна этой сферической стенкой полностью отражается и с «фо­кусировкой» «возвращается» в сторону Земли. Отра­женная волна с двойной силой воздействует на сфери­ческое «зеркало», уплотняя «тело» последней и обеспе­чивая ее дальнейшее, как бы независимое от планеты, движение (рис. 86).

В свою очередь отра­женная космическим «зер­калом» электромагнитная волна возвращается к телу (к поверхности Земли), имея те же параметры, что и движущаяся ей на­встречу волна самопульса­ции.

В результате на всем пространстве от «зерка­ла» до Земли образуются стоячие волны, обусловли­ вающие притяжение Зем­ ли к «зеркалу» и «зеркала» к Земле. Сила F 2 оказывается скомпенсированной этим притяжениеми все образование ¾ глобула вместе с планетой ¾ движется под действием сил F 4 и F 2 по орбите вокруг Солнца, и это движение поддерживается увеличением скорости течения времени сзади неё в области разряжения. Об­ разуется совершенно необычная природная конструк­ ция типа тяни-толкай, в которой компенсация одного волнового усилия обеспечивает превращение отталки­ вающей силы в силу толкающую. Вот почему вещественное пространство не тормозит са­модвижение тел в своей среде. На рис. 86. изображена примерная схема появления эфирного «зеркала» перед движущейся планетой.

Поскольку нам неизвестны параметры сжатия и раз­ряжения движущейся волны, а известно только измене­ние плотности пространства Солнечной системы, попробуем, ориентируясь на эти изменения, определить приблизительную картину взаимодействия и место воз­можного образования эфирного «зеркала», например, для нашей планеты. Прежде всего отметим, что зона одинаковой плотности эфирного пространства от Солн­ца и Земли, при положении последней в точке А, прохо­дит по линии BE , причем ОВ = ВА. При движении пла­неты по орбите дуга ВСД перемещается пропорцио­нально изменению угла ВОВ', но не пропорционально плотности пространства. Похоже, что именно эта дуга и образует сферическое эфирное «зеркало». Параметры «зеркала» определяются изменением плотности от нее до планеты. И вогнутая сфера ударной плотности долж­на отстоять всеми своими точками на таком расстоянии от поверхности планеты, которое обеспечивает одина­ковое количественное изменение скорости и параметров волн как при движении их от планеты, так и в обратном направлении. Отмечу, что процесс движения электриче­ских волн по направлению и против направления полета планеты по орбите в значительной степени определяется эффектом Доплера.

По-видимому, данный механизм обеспечивает движе­ние всех тел от элементарных частиц до галактик и да­лее как вглубь, так и наружу, а также тел, обретающих движение в результате различных естественных или ис­кусственных процессов. Поэтому все тела движутся в пространстве по таким траекториям, которые обуслов­ливают им их энергетические возможности, проявляю­щиеся в параметрах самопульсации и энергии пространства, в котором они движутся.

На сегодня никаких параметров «зеркала» от электро­магнитных волн от планет и изменения эфирной плот­ности пространства эмпирически не обнаружено, а тео­ретически их и не может быть. Однако некоторые косвенные достоверные данные свидетельствуют о су­ществовании «зеркала». Например, об этом свидетель­ствуют так называемые «скачкообразные» «негравитаци­оные» изменения кометных орбит, не имеющие естественного объяснения. Или наблюдаемое иногда как бы беспричинное деление кометного ядра. И, наконец, конфигурация ядра кометы, светящаяся часть которой достигает сотен тысяч и даже миллионов километров (какова невидимая, уплотненная ударной волной часть пространства перед головой кометы, сказать, пока ещё, не­возможно).

Надо отметить еще одну возможность эксперимен­тального обнаружения эфирного «зеркала», образующе­гося по орбите перед планетой. Оно, это эфирное уплот­нение, является некоторым подобием гравитационной линзы, правда, достаточно слабой. И все же свет от звезд, проходящий через вогнутости «зеркала» вблизи касательной к уплотнению или через него, будет немно­го отклоняться от прямолинейного направления, «раз­двигая» или «сдвигая» изображения звезд на фотогра­фиях, по-видимому, в пределах 0,05-0,1%. Это, конечно, незначительные и достаточно незаметные отклонения, но все же их можно обнаружить современными фото­метрическими методами. Естественно, что наибольшее отклонение может наблюдаться при прохождении лучей через эфирное «зеркало» Меркурия или Венеры, по­скольку они имеют наибольшую орбитальную скорость, да и плотность эфирного пространства в районе, напри­мер, орбиты Меркурия на порядок выше, чем даже на орбите Земли или Марса (табл. 33).

 

7.5. Магнитные параметры планет и спин

 

Ранее было получена атомная структура Солнечной системы, в которой функции электронов выполняют планеты, а вокруг планет их спутники. Известно также, что электроны атомов обладают не только механиче­скими свойствами, но и магнитными, и естественно бы­ло бы задаться вопросом: А обладают ли магнитными свойствами, например, планеты-электроны и какова зависимость между электрическими и магнитными свой­ствами в Солнечной системе?

Поскольку планета-электрон вращается по орбите во­круг ядра Солнца в замкнутом контуре, то в соответст­вии с законами электродинамики вдоль ее движения должен возникать электрический ток. Магнитные свой­ства замкнутого контура с током обусловливаются маг­нитным моментом Рт:

Pm = IS = I p r2 ,                                                 (7.10)

где I = ev  - сила тока, S - площадь орбитального кон­тура. Среднюю скорость движения планеты-электрона по орбите можно представить в виде v = 2p r w и, преобра­зовав относительно v и подставив в (7.10), получим уравнение:

Pm = evr /2,                                                       (7.11)

где Рт - называется орбитальным магнитным моментом.

Подставим в (7.10)параметры планеты Земля и получим ее орбитальный магнитный момент Рm = 1,516·1059. На рис. 87 изображена схема планеты, вращающейся вокруг Солнца против часовой стрелки, если смотреть сверху, и ее орбитальный магнитный момент, согласно электродинамике, имеет направление вниз.

Кроме электрического заряда, как показано выше, глобула-электрон обладает массой и потому при ее дви­жении по орбите возникает механический орбитальный момент количества движения L . Он, как известно, равен:

L = mvr .               (7.12)

Подставляем числа параметров в (7.12) и получаем ве­личину орбитального количества движения L = 1,646·1059.

Отношение моментов Pm / L называется гиромагнит­ным отношением и обозначается через f . Определим его:

f = Pm/L = evr/2mvr = e/2m = 0,921.

Ровно в два раза меньше удельного заряда из таблицы 37 столбец 9. То есть можно констатировать, что гиро­магнитное отноше- Рис.87.            ние есть половина удельного заряда электрона глобулы Земли.

Если предположить, что Земля представляет собой электрон, движущийся в однородном магнитном поле перпендикулярно его силовым линиям, то можно опре­делить магнитную индукцию В электрона по формуле:

F = evB .                                                             (7.13)

Поскольку сила, получаемая из (7.13), уравновешива­ется, как полагают, центробежной силой

F 1 = m v2/ R,                                                       (7.14)

и F 1 = F , то, приравнивая правые части (7.13), (7.14) и решая получившееся уравнение относительно магнит­ной индукции, находим величину В для Земли-электрона:

В = mv2 / eRv = mv / el = 3,917·1025·2,989·10 /7,214·1025·l,496·1013 = 1,084·10-7.

Поскольку Земля-электрон движется в электрическом поле Солнца ЕС равном:

Ес = ec/l 2 = 2,756·1026/(1,496·1013)2 = 1,231,

то можно получить силу Лорентца F л .

Fл = еЕс + evB = 1,231·7,214·1025 + 7,214·1025·2,989·10б·1,084·10-7 =

 = 8,884·1025 + 2,337·1025 = 1,122·1026.

Таким образом, оказывается, что движение планет Солнечной системы можно описывать и в терминах ме­ханики, и в терминах электродинамики, и в терминах квантовой механики. Эти возможности еще раз демон­стрируют надуманность так называемых квантовых за­конов, искусственность и усложненность математиче­ского аппарата, описывающего несуществующие зако­ны, закономерное появление вероятностного истолко­вания их и, как следствие, демонстративное отсутствие наглядности в описании квантовых явлений. Попробуем разобраться, имея весь спектр физических понятий, чем же является для модели атома ¾ Солнечной системы ¾ такое физически не представимое в квантовой механике явление, как спин электрона.

Прежде всего, отмечу, что момент импульса L описывается в квантовой механике формулой:

L = 2hÖ[l(l +1)],

где l - орбитальное квантовое число, принимающее зна­чение l = 0, 1, 2, 3,.... (Рассмотрение состояний s , p , d , ... и т.д. опускаю за ненадобностью в настоящем изложе­нии.)

Здесь очень важно то обстоятельство, что орбитальное число может быть равно l = 0, а, следовательно, в кван­товой механике может возникнуть ситуация, когда момент импульса L отсутствует. Для структуры модели атома «Солнечная система» это равнозначно тому, что в процессе движения Земли по орбите случается ситуация, когда она со своей орбиты, да и вообще из Солнечной системы, исчезает куда-то, а затем опять появляется не­известно откуда (не переходит с орбиты на орбиту, а как бы «испаряется» и вновь «конденсируется» в своем не­изменном естестве). Это, конечно, оригинально, но вряд ли правдоподобно. Одно это обстоятельство ставит под сомнение существование орбитального квантового чис­ла l . Тем не менее, следом за l появляется магнитное квантовое число с тем же свойством тl = 0, ± 1, ± 2, ±3, ... ±l. Причем одному значению орбитального квантового числа l (определенной величине момента импульса) со­ответствует 2l + 1 значений магнитного квантового чис­ла (которое тоже может иметь величину ml = 0, с теми же последствиями). И все это великолепие квантовых чисел необходимо для того, чтобы получить различные дискретные направления вектора момента импульса, со­вершенно ненужные, например, в описании структуры атома Солнечной системы. Покажу, опуская вывод уравнения, это на примере сопоставления значений «по­стоянной» квантовой механики — магнетона Бора тб:

mб = m б = eħ /2m = f /2.                                      (7.15)

Отмечу, что магнетон Бора µб, не может быть величи­ной постоянной, поскольку его КФР не равен 1: /µб = 3-1·1/3-2 = 2-1. Следовательно, количественная величина магнетона, аналогичного магнетону Бора для планет Солнечной системы, тоже не может быть постоянной. (Об этом же свидетельствует и правая часть уравнения (7.15), параметр f не может быть const .)

Мимоходом отмечу, что магнетон Бора иногда назы­вают «атомом электричества» [158], что неудачно и способствует тер-минологической путанице. Теперь перейду к понятию «спин».

Сначала отметим, что слово «to spin» в переводе с анг­лийского означает прясть, вертеть. Его появление в квантовой механике обусловлено тем, что, объясняя не­которые эмпирические эффекты, Д. Уленбек и С. Гаудсмит приписали электрону собственные магнитный и механический моменты, представляя электрон в виде заряженной сферы определенного радиуса, вращающегося вокруг своей оси. При таком вращении сам электрон об­разует совокупность круговых токов и потому обладает магнитным моментом, а как протяженное тело, имею­щее массу, обладает механическим моментом. То есть здесь отображается полная аналогия с вращающимся вокруг своей оси вещественным шариком. Однако очень скоро от модели вращающегося шарика пришлось отка­заться по следующим обстоятельствам [148]:

•    в модели отношение магнитного момента к электри­ческому совпадает с гиромагнитным отношением. Из опытов следовало, что гиромагнитное отношение для собственного момента в два раза больше, чем орбиталь­ное;

•    если рассматривать классический радиус электрона r е = 2,83·10-13 см (выше было показано, что эта величина никакого отношения к радиусу электрона не имеет), то при значении момента Ms = Ö3ħ/2, следующего из экспе­римента, точка на поверхности электрона должна была двигаться со сверхсветовой скоростью v = 4,13·1012 см/с.

Последнее противоречило постулату о постоянстве скорости света и стало запретном для вращения элек­трона с такой скоростью. Возобладал не эксперимент, а постулат. [Подчеркну, что данный постулат возобладал над здравым смыслом вообще во всей физике, ибо, как уже неоднократно отмечалось, одним утверждением постулируется одновременно с абсолютностью скоро­ сти света изотропность и невещественность про­ странства (его пустоту), в котором свет движется по инерции (то есть без взаимодействия, поскольку взаи­модействовать не с чем) соразмерность расстояний, проходимых им в пустоте (соразмерность чему??) за единицу времени и абсолютность (??) самого времени. Более того, само логическое понятие «пустота» свидетельствует о том, что все отсутствует, что перед нами ничто, которое ничего содержать не может по определению. Т.е. качество, не имеющее отношения к физике. И появление в нем чего-то, означает изменение качества – отсутствие пустоты. К сожалению, современная физика игнорирует категорию качество.[59]. Абсолютность скорости света ¾ очень оригинальный и универсальный постулат. Переосмысливание его одного достаточно, чтобы пустить под откос всю современную теоретическую физику.]

Если же электрон увеличить до размеров планеты, то предлагаемые причины отсутствия самовращения у них отпадают сами собой, тем более, что самовращение у всех планет имеется и не только механическое, но, похоже, хотя и не видимое, электрическое v 2 (табл. 38), и видимо, именно это вращение — вращение электромаг­нитного поля (а не точки на поверхности электрона или планеты) — отображает наличие «исковерканного» спина в кванто­вой механике. Посмотрим, какую величину имеет меха­нический момент электрона-планеты при учете линей­ной скорости вращения электромагнитного поля у поверхности планет, например Земли и Юпитера, ис­пользуя массу этих планет Мз, их радиус R з и скорость вращения электромагнитного поля v (еще раз отмечу, что это электромагнитное вращение нашими приборами не фиксируется, если не считать приборами космиче­ские аппараты, и в данной работе получается в результа­те теоретического расчета):

M З R З v = 5,98·1027·6,371 108·4,562·108 = 1,74·1045 = ħ с c.

МЮ R Ю v = 1,794·1027·7,13·109·1,364·108 = 1,74·1045 = ħ с c,

где ħ сс - постоянная Солнечной системы.

Вырисовывается совершенно необычная картина. Собствен-ный механический момент планеты-электрона оказывается равным собственному механическому мо­менту глобулы. Более того, он оказывается одинаковым для всех планет и для Солнца. И, следовательно, на лю­бой орбите вокруг Солнца могут находиться только такие тела-электроны, произведение параметров М, R и v 2 которых образует квант Солнечной системы ħ сс. Похоже, что главное в квантовой механике не кванто­ вание орбит и других параметров (они не квантуются), а квантованная зависимость параметров тел-планет. Именно это квантование определяет всю совокупность взаимодействий между телами звездных систем и анало­гичными телами в молекулах и атомах. А место на ор­ бите «регулируется», вероятно, гиромагнитным отно­ шением собственного магнитного момента тела планеты-электрона к ее же механическому моменту. Это отношение, скорее всего, пропорционально пульса­ ции или вращению гравитационного или электромаг­ нитного полей небесных тел.

Отсюда также следует, что вращение собственного электромагнитного поля планеты обусловливает суще­ствование и механического, и магнитного орбитальных моментов ее тела. И любые изменения внешнего (солнечного или галактического) гравитационного или маг­нитного полей, изменяющих соответствующие напря­жения в глобуле планеты, будут с неизбежностью из­менять направление оси вращения планеты от нескольких градусов до 180°. То есть до перемены ее географических полюсов. Такое изменение способно «выбить» из планеты «отдельные» образования (эфирогравиболиды [33]), переместив ее с одной орбиты на другую и, более того, может просто «выкинуть» планету из глобулы, как бы отправив ее подальше от Солнца в «самостоятельное» путешествие в эфирном космиче­ском пространстве.

Зная об этом, посмотрим, какую же величину имеют собственные магнитные моменты планет-электронов?

Рт = envnrn/2.                                                   (7.16)


Дата добавления: 2018-11-24; просмотров: 38; ЗАКАЗАТЬ РАБОТУ