Годовое изменение параметров Земли 23 страница



Констатирую: в природе существует одна механика для всех уровней. Эта констатация может быть под­тверждена сопоставлением свойств различных механик посредством системы КФР. В табл. 29 приведены неко­торые коэффициенты физической размеренности различ­ных разделов физики (6.46). В нее попали только те свойства, которые либо мы фиксируем своими ощуще­ниями, либо можем зафиксировать приборами. По­скольку свойств у природы бесчисленное количество, то каждый раздел (кроме квантовой механики) заканчива­ется набором наиболее употребимых в практической деятельности свойств. Все свойства, используемые в механике, отражены в табл. 29. В табл. 29 приведены коэффициенты значимости сле­дующих, ранее не встречающихся в данной работе свойств: объем - V n, мощность - Nn.

Электродинамика: поток напряженности bn, маг­нитный заряд - рn; электропроводность - Λn, элек­троемкость - Сn, магнитная постоянная - µn, потен­циал электрического поля - φn, электродвижущая сила - εn, напряжение - 0n, работа - Аn , сила тока - In, магнитная индукция - Вn, коэффициент взаимной ин­дукции - Мn, напряженность электрического поля - Еn, электрическая индукция - D n , напряженность маг­нитного поля - Нп, мощность - Nn.

Из табл. 29 явствует:

• наибольшее количество свойств в настоящее время проявлено в электродинамике;

• наименьшим количеством свойств и поэтому наи­ большим количеством постулатов обходится квантовая механика;

• основные параметры классической механики имеют только

четные показатели степени;

• свойства во всех разделах содержат не все степени коэффициентов (23,21 , 2 ,...);

• недостаток свойств в квантовой механике еще раз свидетельствует о наличии в ней скрытых параметров;

• значительное количество параметров имеют коэф­фициенты с одинаковым степенным показателем;

• между параметрами разных уровней не наблюдается качественной несовместимости и, следовательно, каж­дый из них может быть отнесен к любому разделу физи­ки.

Отсюда также следует вывод, что физическая сущ­ ность всех параметров едина, на всех уровнях действу­ ют одни и те же законы и имеются одни и те же свой­ ства. Эти свойства и принадлежат единой механике природы.


 

7. Квантование Солнечной системы

 

7.1. К пониманию структуры

планетарных образований

 

Ранее, при рассмотрении основ динамической геомет­рии, был получен объемный коэффициент физической размерности, равный количественно k = 1,259921..., ко­торый можно соотнести с некоторым структурным стро­ением окружающего физического вещественного про­странства. Поскольку каждое космическое тело нахо­дится в эфирном пространстве, взаимодействует с ним и воздействует на него своими параметрами, и в первую очередь колебательным движением ¾ пульсацией, или, что, то же самое, посредством гравитационного, элек­тромагнитного квантованного поля, то следует ожидать, что:

• плотность эфира у поверхности любого тела будет больше, чем в отдалении от него, образуя вокруг него некоторое единое динамическое пространство изменяемой плотности;

• замкнутость современной квантовой механики, ее антифизический характер, зацикленность математиче­ской формализации и постулативная форма изложения обусловили ей, как следует из табл. 29, минимальный, по сравнению с другими механиками, набор параметров, слабую, точнее, постулируемую взаимосвязь между ни­ми, господство «фундаментальных постоянных», веро­ятностный характер истолкования и полное отсутствие наглядности в описании ее явлений;

• самопульсация тела, передаваемая эфиром, обуслов­ливает существование полевого фактора в  космосе;

• все свойства эфира, и в первую очередь плотность, с удалением от тела изменяются количественно;

• структура анизотропного пространства обусловливает скачкообразное изменение плотно­сти эфира становясь пе­редатчиком волнового от движения небесных тел;

• поскольку волновое воздействие тел на окружающее пространство имеет объемную форму, то возникновение пространственных неоднородностей пропорционально объемному коэффициенту k [65].

Поэтому можно ожидать, что в звездных или плане­тарных системах, например, в Солнечной системе, име­ются сферические зоны различной плотности эфира, ко­торые и оказываются предпочтительными для нахож­дения в них более мелких небесных образований, например, планет и спутников. Последние удержи­ваются в этих зонах посредством самопульсации и большей, относительно окружающего пространства, плотности своего тела. Естественно, что каждое тело имеет собственный объем, ограниченный нейтральной зоной, и динамический объем, в котором его плотностные и пульсационные влияния оказывается преобладающими.

Таким образом, эфирное пространство, окружающее небесные тела, можно, в первом приближении, пред­ ставить структурой, образуемой некоторым набором подвижных сферических образований, эфирных сгуще­ ний и разрежений, обусловливающих существование планетарных систем и обеспечивающих их взаимное движение, (Интересно, что почти аналогичное пред­ставление о небесных сферах просматривается у Ари­стотеля.)

Поскольку сгущение и разряжение эфира обусловли­ваются плотностью и пульсирующим движением небес­ных тел, и известно, что Солнце тоже пульсирует, то от­счет «сфер» сгущения и разрежения можно начинать от поверхности центральных тел, а для планет ¾ от поверх­ности Солнца. Отмечу, что имеется несколько работ, посвященных различным методам квантования Солнечной системы, наиболее отработанной из них является работа К. П. Бутусова [149].

Рассмотрим систему «сфер», образуемых в простран­стве Солнцем. При этом первой «сферой» становится его поверхность, отстоящая от центра на радиус R , а ка­ждая последующая сфера находится умножением вели­чины предыдущей R на коэффициент k.Доказательст­вом наличия неоднородностей в указанных областях пространства может считаться нахождение в их окрест­ностях каких-нибудь известных нам небесных тел. По отношению к Солнцу такими телами могут оказаться планеты Солнечной системы, по отношению к планетам ¾ их спутники. Отмечу, что объемный k есть четвертая степень темперированной секунды, и получаемые по нему длины поперечных волн включают, по-видимому, длину двух волн или содержат четыре узла, в которых также могут находиться небесные тела.

При этом не следует ожидать, что каждое сжатие эфи­ра, образуемое, например, узлом стоячих волн, является носителем того или иного тела. Скорее эти узлы и явля­ются потенциальными претендентами на то, что в их ок­рестностях могут оказаться, амогут и не оказаться пла­нета или спутник. А вот окажутся или нет, — зависит от предыстории развития данной системы. Но если воз­можно обнаружение тела в околосолнечном пространст­ве, например, двигаясь от его поверхности, то возможен и вариант нахождения сфер обратным способом, двига­ясь от поверхности одной из планет к поверхности Солнца.

Естественно, что этот метод приведет к значительному разбросу параметров, но надо учитывать, что небесные тела не прибиты гвоздями к пространству, каждое имеет свои физические особенности и, в соответствии с ними, взаимодействуя с окружающим пространством, занима­ют место, определённое этим взаимодействием и влия­нием других тел (например, спутников) на эти взаимо­действия.

Начнем отсчет зон сгущения (узлов) от поверхности Солнца последовательным умножением его радиуса на коэффициент k = 1,259921... . Первые 19 операций ум­ножения не дают, ни одной зацепки за известные объек­ты. Но вот на двадцатой операции в зону сгущения с точностью до 4% укладывается средняя величина орби­ты Меркурия (см. табл. 30, она начинается с 20-й орби­ты). На 23-й операции с той же точностью получаем об­ласть, соответствующую радиусу орбиты, в которой находится Венера,далее следует сгущение «занятое» Землей, но с ошибкой в 6%. Это явно недостаточная точность, которую превышает разве что Юпитер, нахо­дящийся в сгущении с отклонением ~ 8,4% но Земля имеет весьма массивный возмутитель — Луну, а Юпи­тер — целый сонм таких лун. Сомнительно, что они не влияют на

Таблица 30

  № от Сол­нца Планеты % Факт, расст. По орб. Юпит. По Тиц.Боде По по­верх. Солнца
1 2 3 4 5 6 7 8
1 20. 21. 22. Меркурий -4 0,39 0,41 0,40 0,375 0,472 0,596
2 23. Венера ~4 0,72 0,82 0,70 0,750
3 24. 25. Земля ~6 1,00 1,03 1,00 0,945 1,191
4 26. 27. 28. 29. 30. Марс ~1,5 1,64 1,60 1,60 1,501 1,891 2,382 3,001 3,784
5 31. 32. 33. Юпитер ~8,5 5,20 5,20 5,20 4,764 6,002 7,563
6 34. 35. 36. Сатурн ~1,5 9,40 10,40 10,00 9328 12,005 15,125
7 37. 38. Уран -1,5 19,18 20,81 19,60 19,056 24,010
8 39. Нептун -0,5 30,07 33,04 38,80 30,250
9 40. Плутон -3,5 39,44 41,62 77,20 38,113

положение планет. Орбиты остальных планет ук­ладываются в неоднородности с точностью до 4%. Можно отметить, что если длина волны определяется коэффициентом, равным темперированной секунде, то точность опреде­ления средних орбит небесных тел возрастет.

Волновая структура пространства Солнечной системы и узлы, в области которых оказываются планеты, пока­заны на рис. 83. На рисунке видно, что между Меркури­ем и Венерой укладывается столько же волн, сколько между Сатурном и Ураном, тогда как расстояние между Меркурием и Венерой l = 50,3 млн. км несопоставимо с расстоянием между Сатурном и Ураном l = 1446 млн. км.

На сегодняшний день имеется несколько способов примерного определения расстояния от Солнца до пла­нет [152,153,154,155 и др.], но большинство из них ис­пользуют методы аппроксимации и корреляции [156]. Наиболее известным и распространенным является за­кон Тициуса-Боде [156]. В столбце 7 табл. 30 показаны рас­стояния до планет, полученные по этому закону. Однако закон не объясняет причин расположения планет в этих областях, относительно точно определяет расстояние до 7 планет,

и неявно исходит из квантованной структуры Солнечной сис­темы, коррели­руя только часть ее. Анализ таб­лицы 30 показы­вает, что до пла­неты Плутон от Солнца череду­ются 160 (80 длин поперечных волн) простран­ственных неоднородностей (уз­лов) и только 9 из них «заполне­ны» планетами, а остальные сво­бодныот боль­ших тел. И дан­ная структура весьма напоми­нает структуру атома Резерфорда-Бора:

• как и в моде­ли Бора, пространство имеет квантовую структуру;

• в структуре имеются «свободные» неоднородности аналогичные энергетическим уровням;

• распределение орбит упорядочено узлами и кратно иррационально-му числу.                    

К тому же, как это следует из таблицы 31, использова­ние объемно-го коэффициента k для нахождения энерге­тичес-ких уровней модели Бора дает примерно такие же Рис. 83.                                                          результаты, как и его метод, что показывает универ­сальность применения КФР.          

Таким образом, объемный коэффициент можно при­менять для примерного нахождения расстояния от пла­нет до Солнца по формуле:

l' = knl,

где п - номер расчетной «сферы», l - расстояние от исходной «сферы», l ' - искомое расстояние.

Объемный коэффициент k интересен тем, что с одной стороны показывает анизотропность и неоднородность вещественного пространства, а с другой наглядно отра­жает бесконечность материи вглубь и наружу.

Универсальность объемного коэффициента k под­тверждается и тем, что он с той же точностью может быть применен для вычисления радиусов орбит спутни­ков планет, методы вычисления которых на сегодня от­сутствуют. В табл.

Таблица 31                       

Спутники Расто- яние По орбите Каллисто № от поверх. Юпитера По поверх. Юпитера % оши- бки
1. Амальтея 181 187 5 180 0,6
2. Ио 422 471 9 453 7
3. Европа 671 748 11 719 7
4. Ганнимед 1071 1187 13 1142 7
5. Каллисто 1884 1884 15 1813 4
6. 3 спутника 1170 11960 23 11500 1,5
7. 4 спутника 2200 23900 26 23000 4,5

31 и 32 приведены расчетные вели­чины радиусов орбит спутников Юпитера и Сатурна и количество неоднородностей (узлов) от поверхности до последнего спутника.

Точность нахождения спутников Юпитера в неоднородностях выше, чем аналогичная точность для планет, и находится в пределах 0,5-7%, количество неоднород­ностей 104, из них заполнено только 7. В двух неоднородностях образуются орбиты (23 и 26) для трех и четы­рех спутников, вращающихся синхронно. Приведу, параметры спутни­ковой системы Сатурна:

Таблица 32

№ Спутники  Рас-       По ор- № от Расчет от % 

                           сто- бите  пов-ти пов-ти ошиб

                         яние Рея    Сатурна Сатур. ки

1 Янус          158 166    5        152      4

2 Мимас        187 209    6        192      2,5

3 Энцефелад   238 264    7        242     2

4 Тефия       295 332    8        304      3

5 Диона       378 419    9        383      1,5

6 Рея            528 528    10      484     9

7 Титан        1123 1329   14      1218    8

8 Гиперион    1484          1675   15        1534 3

9 Япет         3563 4220  19      3867    8,5

10 Феба          12950 13400 24      12270  5,5

У Сатурна количество сфер неоднородности равно 96, из них заполнено спутниками 10. Плотность заполнения находится в пределах 1,5-9%, что примерно соответст­вует плотности планетного заполнения. В тоже время еще не обнаружено планетных систем, у которых бы первые четыре неоднородности включали какие-то не­бесные тела.

Таким образом, используя объемный коэффициент, можно, в первом приближении, получать распределение небесных тел по орбитам в Солнечной системе.

 

7.2. Строение околосолнечного

пространства

 

Важнейшее значение для понимания структуры око­лосолнечной области имеет численная величина плотности пространства, ее изотропность или анизо­тропность по объему и влияние этой плотности на со­стояние и движение небесных тел. Напомню, что по сложившимся представлениям околосолнечное про­странство считается практически пустым, не отличаю­щемся по плотности от других звездных систем и по ко­личественной величине близкой к предполагаемой (?? – А.Ч.) средней плотности вещества Вселенной r = 10-30 г/см . Главное, — все исследователи (мне не известны исклю­чения) рассматривают пространственную плотность изотропной по всему объему Вселенной. И эта изотроп­ность нарушается вкраплинами звезд и других плотных небесных тел отграниченными от космической плотно­сти своей поверхностью. Однако единая, общепризнан­ная величина космической плотности на сегодня в науке отсутствует. Различные исследователи получают теоре­тические величины плотности космического простран­ства, различающиеся на десятки порядков. Л. Шипицын [29] приводит данные Уиллера получившего эффек­тивную плотность вакуума r = 1095 г/См3. Близкая по ве­личине планковская плотность rо получается из теории размерности как соотношение гравитационной «посто­янной» G, скорости света с и постоянной Планка h:

rо = c 5 / G 2 h = 5,18·1093 г/см3.

Различие между этими данными и предполагаемой средней плотностью веществ во Вселенной составляет 10125 раз. Это крайние пределы. Другие исследователи находят значения плотности в пределах 1013-1017 (Окунь), 1014 г/см3 (Фейнман), 2·1014 г/см3 (Зельдович). Зельдович отмечает так же, что теория тяготения не мо­жет объяснить тот факт, что плотность энергии вакуума превосходит в 1043 раза плотность вещества во вселен­ной. Имея столь колоссальный разброс в значениях плотности (но не густоты [150]), а, следовательно, и от­сутствие представления о конкретной величине ее в ок­рестностях Солнечной системы, придется исходить из той плотности r = 5,52 г/см, которую, по современ­ным представлениям, имеет Земля. Поскольку именно плотность, соответствующая плотности окружающего космоса и обусловливает ее нахождение в данной облас­ти пространства. Это первая проблема.

Вторая проблема, подлежащая решению, заключается в том, что отсутствует ясность в пространственном рас­пределении плотности. По современным представлени­ ям космический вакуум, занимающий пространство, од­ нороден и изотропен. Этот вывод получается на основе количественного усреднениявидимого вещества, вхо­дящего в звезды, туманности, галактики и все известное науке космическое пространство. Однако качественная взаимосвязь расстояния l и плотности r по КФР свиде­тельствуют о том, что пространственная плотность от поверхности небесных тел не может быть изотропной. Качественная размерность плотности по КФР равна r о = 214, аналогичная размерность расстояния (в данном слу­чае от поверхности тела — Земли в околосолнечное пространство) lо = 24 (табл. 12). Их инвариантная сово­купность:

(r -14)2 ·(l4)7 = 1,


Дата добавления: 2018-11-24; просмотров: 48; ЗАКАЗАТЬ РАБОТУ