Годовое изменение параметров Земли 22 страница



Исходя из уравнения (6.16)

l np = 1/(R ¥ n - R ¥ p),

заменив в (6.16) R ¥, на правую часть (6.27) и проведя преобразования, находим классическое (не квантовое) уравнение, определяющее длину волны испускаемого фотона для тех случаев, когда нам известно расстояние от центра ядра до орбиты, с которой испущен фотон ап, и орбиты, на которую он перемещается ар:

l np = 4 p a anаp /(ap - an ).                                (6.28)

Используя уравнение (6.28), можно по одной из­ вестной спектральной линии определить теоретически весь спектр испускаемых некоторым элементом фото­ нов и, следовательно, сам элемент. Отмечу, что теоретически испускание фотонов может начинаться электронами с первой от ядра орбиты (электрон после ис­пускания падает на ядро?), со всех последующих орбит, кончая теми электронами, которые обращаются на гра­ничной межатомной зоне. Это, конечно, в случае моно­тонного изменения эфирной плотности от ядра к пери­ферии. Однако и плотность изменяется не монотонно, а скачкообразно, образуя «отграниченные» сферы различ­ной плотности, находящиеся у атомов каждого элемента на различных расстояниях от ядра. А потому электроны элементов «активнее» испускают фотоны в отграничен­ных областях атомов, что и делает спектр каждого эле­мента серийно индивидуальным, а элементы ¾ распозна­ваемыми по спектру.

Особенность предлагаемого метода определения длин волн заключается в том, что он, в принципе, позволяет по одной спектральной линии из любой области спек­ тра, используя уравнение (6.28), восстановить всю гам­ му остальных спектральных линий и коэффициент, по­ добный коэффициенту Ридберга, для данного элемента. Поскольку операция восстановления достаточно проста, опустим ее и вернемся к электронам, находящимся не за пределами атомов, а внутри их. Еще раз отмечу, что плотность эфирного пространства от периферии (ней­тральной зоны) атома к ядру возрастает, что и обуслов­ливает сокращение геометрического расстояния между электронными орбитами и уплотнение тел самих элек­тронов. (Происходит то же самое, что наблюдается у планет Солнечной системы. Более близкие к Солнцу планеты меньшего размера имеют большую поверхно­стную плотность, чем отдаленные.) Понятно поэтому, что именно плотность соответствующего простран­ственного размера определяет все параметры движе­ния электронов и испускаемых ими фотонов. Надо по­лагать, что плотностные условия значительно «замедляют» как процесс накопления энергии для «вы­работки» фотонов-кернов, так и процесс выхода их из ядра в межядерную зону. Естественно при этом, что, двигаясь наружу из внутренней области ядра, фотоны, перемещаясь в пространстве уменьшающейся плотно­сти, изменяют все параметры своей пульсации и поэто­му длина волны фотона, вылетевшего, допустим, из средней области атома в межатомную зону, может быть на несколько порядков больше, чем в области его испус­кания. По формуле (6.28) можно получить длину волны l n любого фотона в той области атома, в которой он был испущен электроном. Для компенсации плотности эфи­ра и нахождения длины волны фотона в межатомном пространстве необходимо умножить l n на коэффициент k в степени n , где п - количество длин поперечных волн от места его испускания до межъядерного пространства:

l р = kn l n .

Эта операция не применяется к фотонам, испущенным водородом за «пределами» атома, потому, что соответ­ствующие орбиты электронов появляются вследствие разрежения атмосферы, изменяющей эфирную плотность атомов водорода и «разуплотняющей» электроны. Изменение пространственной плотности вызывает обра­зование «дополнительных» орбит, как бы во вновь обра­зовавшемся пространстве, за пределами атомного раз­мера, что способствует ускорению испускания фотонов с находящихся на них электронов.

Следует отметить поэтому, что количество электро­ нов в атомах веществ может не соответствовать их атомному номеру, поскольку не электроны обусловливают свойст­ва веществ, а их расположение в атоме существенно не влияет на физические и химические характеристики элементов. Всё свойства веществ определяются в пер­вую очередь средней плотностью нейтральных зон, ядер и пространства атомов, их самопульсацией, а также межъядерным расстояни­ем. Плотность и расстояние между ядрами (иначе говоря, плотностные объемы атомов) ¾ вот те факторы, которые определяют прочностные параметры и строят весомые тела.Но это отдельная и большая тема, на которой здесь останавливаться не бу­дем.

 

6.7. Единство механики, электродинамики

и квантовой механики

 

Уже три четверти века, с легкой руки А. Эйнштейна, фи­зики грезят «великим объединением» четырех «фунда­ментальных законов» взаимодействий природы в рамках единой теории всего сущего. Однако задача оказалась достаточно сложной и, как показывает опыт значитель­ных затрат времени и усилий, решение ее затягивается. Это затягивание обусловлено не отсутствием мощных коллайдеров, не низким быстродействием вычислитель­ной техники и не слабостью математического аппарата, а теми мировоззренческими принципами и постулатами, которые заложены в основание современных физиче­ских теорий. Не останавливаясь на их гносеологическом анализе, отмечу, что вопрос о необходимости объедине­ния, как уже говорилось, есть следствие предваритель­ного, еще со времен Ньютона, постулативного разъеди­нения описания единой природы на несколько обособленных научных направлений и выбора первич­ного понятийного аппарата, обусловившего это разделе­ние.    

Принципиальным вопросом, определяющим необхо­димость объединения или иного восстановления едино­го описания природных процессов, является вопрос о структурной изотропии или анизотропии материального мира.

Надо сначала понять ¾ представляет ли из себя мир монотонную бесструктурную изотропную вещественно-невещественную систему, образуемую макро- и микро­миром, в которой Действуют взаимоисключающие зако­ны (например, законы классической механики отлича­ются от законов электродинамики, а квантовые законы принципиально несовместимы с классическими).

Или же вещественный мир представляет собой после­довательную, анизотропную, взаимодействующую сис­тему, образуемую материальными телами различной ранговой иерархии, имеющую одинаковые для каждого ранга законы взаимодействия. (Тогда различие законов классической и квантовой физики есть следствие недос­таточного понимания структуры и взаимодействия при­родных образований на начальной стадии становления классической и квантовой механики.)

Поскольку физическая научная общественность по­стулирует существование изотропного макро-микро мира и сосредоточена на решении задачи объединения силовых взаимодействий данных миров, рассмотрим, на качественном уровне, возможность ее решения в рамках гипотезы о ранговой структуре материального мира. (Существование вещественной ранговой структуры обосновано ранее в динамической геометрии [2].)

Как было показано, разделение физики на обособлен­ные группы научных направлений оказалось следствием развития, механики Ньютона, построенной на системе аксиом, взаимная непротиворечивость которых осталась недоказанной. Данные аксиомы образовали замкнутую систему физических категорий, относящуюся к механи­ческому описанию природных процессов и препятствующую включению в область своих взаимодействий «инородных» категорий и аксиом. Этому способствова­ло также и некоторое формальное отличие, например, электродинамических взаимодействий от механических. И хотя электродинамика и классическая механика име­ют немало уравнений, сходных по своей структуре, и в первую очередь наличествует сходство закона Ньютона и электродинамического закона Кулона, в механике как бы не наблюдается целый ряд явлений, присущих элек­тродинамике: например, дихотомия притяжения и от­талкивания, наличие двух видов электричества, кажу­щееся постоянство зарядов и массы электрона, наличие электромагнитных свойств и т.д.

Именно эти формальные различия, которые могли 6ыть связаны с недостаточным пониманием сути взаи­модействий на заре классической механики, обусловили в последующем ее окончательное обособление от элек­тродинамики и способствовали бурному развитию кван­товой механики на принципах, «не совместимых» с принципами классической механики. Чтобы убедиться в противопо­ложном, рассмотрим качественное единство механики, электродинамики и квантовой механики исходя из того очевидного факта, что первые две являются механиками силовыми, чем, в частности, отличаются от как бы не силовой - а энергетической квантовой механики. Свой­ства последней без анализа введем в таблицу единых свойств природы.

Итак, в полном соответствии с представлениями о двух механиках (ньютоновской и русской) могут быть предложены два варианта описания строения окружаю­щего мира:

• один, имеющий монотонно-изотропное строение, существующий на уровне, как макромира, так и микромира и имеющий принципиально различные законы взаимодей­ствия;

• второй, имеющий ранговую структуру иерархиче­ских, отграниченных друг от друга ней­тральной зоной, материальных образований ячеистого типа, имеющих одни и те же законы взаимодействия для различных рангов. Например, мы живем в макромире, ранг которого охватывает пространственную область от атомов и молекул до скопления галактик. Следующий вглубь материи ранг микромира — электродинамика — охватывает область от скопления атомов (молекул) до амеров ¾ образований, нами приборно пока не наблю­даемых. Оба мира едины и имеют принципиально оди­наковые законы взаимодействия.

Если предположить, что большинство отличий взаи­модействия тел макромира от микромира сложно на­блюдать в ранге, в котором они происходят, но, проще из «большего» ранга, например, из того же макромира электродинамические взаимодействия, то противоре­чивые явления в них снимаются и можно путем чисто формальных преобразований показать единство клас­сической механики и электродинамики, опираясь при этом на известные уравнения обоих направлений.

Так, и в классической механике и в электродинамике достаточно часто используют уравнение центробежного взаимодействия тел для описания орбитального движе­ния под воздействием внешней силы F:

F = mv2/R,                                                    (6.29)

где v - скорость орбитального движения; R - радиус орбиты; m - масса тела.

По закону Кулона сила притяжения F зарядов е опре­деляется уравнением;

F = e2/R2.                                                            (6.30)

Сила притяжения двух тел массой m и М в механике Ньютона, как показано выше, описывается уравнением:

F = mMG/R2,                                        (6..31)

где G - гравитационная «постоянная» (здесь не учиты­вается разница фаз, поскольку она не изменяет структу­ру уравнений).

Приравниваем правые части уравнений (6.29) и (6.30) и получаем:

е2 / R2 = mv2/R.            

и получаем:

v2 = е2/mR.                                                   (6.32)

Проведем аналогичную операцию и с уравнениями (6.29) и (6.31):

mMG/R2 = mv2/R.

Имеем:

v2 = MG/R.                                                   (6.33)

Приравниваем, исходя из равенства скоростей v уравнения (6.32) и (6.32) и решаем относительно егр – гравизаряд:

егр2 = mMG.                                                 (6.34)

Для случая m = M имеем:

егр = ±M Ö G.                                                 (6.35)

Уравнение (6.35) известно в электродинамике в сле­дующей записи:

f = e/me,                                                       (6.36)

где f - удельный заряд частицы и аналогично из (6.35) имеем:

fгр = ± Ö G,

или

G = fгр2.                                                       (6.37)

И можно предположить, что в классической механике fгр является удельным зарядом гравитирующих тел, обусловливающим структурное единство законов Кулона (6.30) и Ньютона (6.31):

F = е1е2/R2 = егр1егр2/R2 = mfгр1Mfгр2/R2 = mMG/R2. (6.38)

Уравнение (6.38) показывает, что закон гравитацион­ного притяжения тел Ньютона и закон Кулона, опреде­ляющий силу взаимодействия двух электронов или тел, есть один и тот же физический закон, действующий на разных структурных уровнях материи. Выше показано, что возможность притяжения и отталкивания этому закону обусловливает самопульсация тел. А уравнения (6.37) и (6.38) оп­ределяют возможности описания всех механических яв­лений в терминах электродинамики (табл. 28).

Таким образом, чисто формальные преобразования, произвести которые еще в прошлом веке мешала уве­ренность в принципиальном отличии закона притяжения от закона Кулона, приводят к выводу о структурном единстве классической механики и электродинамики.

Рассмотрим на простом примере параллельное реше­ние задачи классической механики и электродинамики:

Таблица 28

Гравитационное                            Электростатическое

поле                                                   поле
Определяющая величина 

Масса г.                                          Заряд е.

Удельный заряд G = f2,               f = Ö G,

Напряженность                             Напряженность

гравиполя        g.               электрического поля Е

Сила взаимодействия  

F = mМGcos( e - e 1 )/R2.                     F = e2cos( e - e 1) / R2.

Энергия            W = mv2.              W = ev2/f.

Уравнение движения

                    F = mg.                 F = eE.

Напряженность g = a = v2/R = v/T.  a = g = Ef.          

Потенциал    j = fm·f'm'/l.            j = е2/l.

Скорость       v = gt.                      v = Eft.

Путь              S = gt/2.                   S = Eft2/2.

Переходное  g= a = Ef.            a = g = v2/R.
уравнение    F = j 2 .                      j = Ö F.

Снаряд, массой 10 кг выпущен из орудия вертикаль­но вверх. Начальная скорость у снаряда 500 м/с. Опре­делить, пренебрегая сопротивлением воздуха, высоту подъема снаряда h.     

Классическая механика                Электродинамика

W = mv2,                                         W=ev2/f

Энергия движения W в силовом поле при подъеме на высоту h находится из уравнений:

W = mgh                                      W = eEh

h = v2/2g = 12,7. км. h = ev2/2fE = v2/2Ef = 12,7 км

Что также подтверждает возможность описания макро-взаимодействий в рамках иерархической ранговой структуры пространства, как в терминах классической механики, так и в терминах электродинамики. Естест­венно, что описание космических явлений в терминах электродинамики будет сопровождаться качественным изменением представления об этих процессах и частич­но будет затронуто далее.

Еще раз отмечу, что корни механики Ньютона про­слеживаются во всех разделах физики, но, тем не менее, это не приводит к ее единству. В отличие от единой природы физика разделена почти на десяток очень слабо связанных, практически независимых разделов, само­стоятельно изучающих искусственно отделенные друг от друга части природы. У каждого раздела своя мето­дология, свои принципы, свои постулаты и даже своя математика. И чем больше идет изучение, тем дальше отодвигаются друг от друга, эти части. И все, по-видимому, потому, что в основе объяснения этих частей, с одной стороны заложены взаимоисключающие посту­ латы, а с другой строению природы приписывается безуровневая структура, хотя и признается наличие макро- и микромира, существующих как бы самих по себе или относительно человека, а не как определенные взаимо­зависимые и взаимосвязанные структуры.

Таблица 29.Коэффициенты значимости

  21 22 23 24 25 26 27 28 29 210 211 212 213 214
Классичис. механика vn mn Gn Rn l n Tn tn W-n w n jn Mn Η-n a-n g-n F-n Vn N-n y -n r -n
Электро- динамика fn en bn Ф-n m-n v-n m-n Rn Λ-n Rn Cn µon l n j -n e -n u -n Tn η-n tn W-n Jо-n w -n r n t n J-n B-n а-n Mon E-n D-n H-n F-n N-n
Квантовая механика fn е-n v-n m-n Rn l n Tn w -n tn W-n
Русская механика fn e-n b-n Ф-n µn v-n m-n Gn Ron Λn Rn l n Cn µon Tn η-n tn W-n w -n j-n r n t n J-n B-n M-n g-n а-n E-n D-n H-n F-n Vn N-n y -n r -n

Русская механика предполагает существование от­граниченных нейтральными и межъядерными зонами те­ лесных образований, создающих многоуровневую (многоранговую) струк­туру материи от амеров до Вселенной и далее. Образования этой структуры взаимосвязаны и взаимо­зависимы свойствами и движением. Свойства и формы движения у них одни и те же, и принадлежность их разным уровням обусловливает им одинаковую форму взаимодействия на своем уровне.


Дата добавления: 2018-11-24; просмотров: 42; ЗАКАЗАТЬ РАБОТУ