Расчет равновесного потенциала для ионов 12 страница



К волокнам типа В относят миелинизированные, преимущественно преганглионарные, волокна автономной нервной системы. Скорость проведения возбуждения в этих волокнах у теплокровных животных составляет 3-18 м/с. Продолжительность потенциала действия волокон типа В примерно в 3 раза превышает длительность потенциала действия волокон типа А (она составляет 1-2 мс). Отличительная особенность этих волокон состоит в том, что в них не обнаруживается фаза следовой деполяризации, - нисходящее колено пика непосредственно переходит в следовую гиперполяризацию, которая в ряде случаев продолжается свыше 100 мс.

 

К волокнам типа С относят немиелинизированные нервные волокна очень малого диаметра (порядка 1 μм). Скорость проведения возбуждения в этих волокнах не более 3 м/с. Большинство С-волокон относится к постганглионарным волокнам симпатической нервной системы. К С-волокнам относят также нервные волокна, участвующие в проведении возбуждения от болевых рецепторов и некоторых рецепторов холода, тепла и давления. Потенциалы действия С-волокон характеризуются наибольшей продолжительностью (2 мс у теплокровных животных). Они имеют длительную фазу следовой деполяризации (50-80 мс), сопровождающуюся еще более продолжительной (300-1000 мс) следовой гиперполяризацией.

Рис. 1-90. Потенциалы нервного волокна и их регистрация.

А - дифференциальный усилитель для внеклеточной регистрации потенциалов нервного волокна. Б - записи внеклеточного потенциала нервного волокна на примере ответов седалищного нерва лягушки на электрические стимулы возрастающей силы. Показаны момент артефакта стимуляции и момент возбуждения нервных волокон. На фрагментах регистрации 5 и 6 видно, что, несмотря на двукратное увеличение амплитуды стимула, значение амплитуды возникающего возбуждения не изменяется. В - суммарный внеклеточный потенциал смешанного нервного волокна; α, β, γ, δ -потенциалы разных типов нервных волокон

Законы проведения возбуждения

Существует несколько необходимых условий проведения возбуждения по нерву, названных «законами» проведения возбуждения по нервному волокну.

Первый законзаключается в том, что при раздражении нервного волокна возбуждение по нерву распространяется в обе стороны.Для доказательства этого на разные концы нервного волокна накладывают две пары электродов, связанных с двумя дифференциальными усилителями, как это показано на рис. 1-91 А. Раздражение наносят в центре, между этими электродами. В результате двустороннего проведения возбуждения регистрирующая аппаратура, связанная с усилителями, зарегистрирует прохождение импульса как под электродами усилителя (1), так и под электродами усилителя (2).

 

Второй законзаключается в том, что распространение возбуждения в обе стороны происходит с одинаковой скоростью.Если расстояние между электродами усилителя (1) и раздражающими электродами равно расстоянию между электродами усилителя (2) и раздражающими электродами (рис. 1-91 А), то регистрирующая аппаратура зарегистрирует прохождение импульса как под электродами усилителя (1), так и под электродами усилителя (2) одновременно.

Третий законзаключается в том, что возбуждение по нерву распространяется без затуханияили без «декремента». Для доказательства на одну сторону нервного волокна накладывают пару электродов, посредством которых наносят раздражение, а две пары электродов, связанных с двумя дифференциальными усилителями, располагают на удалении, как это показано на рис. 1-91 Б. В этом случае регистрирующая аппаратура, связанная с усилителями (1) и (2), продемонстрирует одинаковую амплитуду потенциала действия нервного волокна.

Четвертый законзаключается в том, что для проведения возбуждения по нервному стволу необходима анатомическая и физиологическая целостность нервного волокна.Проведение импульсов возможно лишь при условии анатомической целостности волокна, поэтому любая травма поверхности волокна нарушают его проводимость. Отсутствие проводимости наблюдается также при нарушении физиологической целостности волокна. В эксперименте на одну сторону нервного волокна накладывают пару электродов, посредством которых наносят раздражение, а пару электродов, связанных с дифференциальным усилителем, располагают на удалении, как это показано на рис. 1-91 В. В этом случае регистрирующая аппаратура, связанная с усилителями (1),

продемонстрирует в контрольных условиях потенциал действия нервного волокна. Достичь нарушения физиологической целостности нервного волокна можно, накладывая между раздражающими и регистрирующими электродами ватку, смоченную спиртом. Если перевязать лигатурой нервный ствол, проведение возбуждения по нему наблюдаться не будет из-за нарушения его анатомической целостности.

 

Пятый законзаключается в том, что возбуждение распространяется по нервным волокнам нервного ствола изолированно.В периферическом нерве импульсы распространяются по каждому волокну изолированно, т.е. не переходя с одного волокна на другое и оказывая действие только на те клетки, с которыми контактируют окончания данного нервного волокна. Изолированное проведение в отдельных волокнах смешанного нерва может быть доказано опытом на нервно-мышечном препарате скелетной мышцы, иннервированной смешанным нервом, в образовании которого участвует несколько спинно-мозговых корешков. Если раздражать один из этих корешков, сокращается не вся мышца, а только те группы мышечных волокон, которые иннервированы раздражаемым корешком. Более строгим доказательством изолированного проведения возбуждения служит отведение потенциалов действия от различных нервных волокон нервного ствола.

Шестой законзаключается в том, что нерв не утомляем.Это доказывается следующим экспериментом. На одну сторону нервного волокна накладывают пару электродов, посредством которых наносят раздражение, а две пары электродов, связанных с двумя дифференциальными усилителями, располагают на удалении, как это показано на рис. 1-91 Б. В этом случае регистрирующая аппаратура, связанная с усилителями (1) и (2), продемонстрирует одинаковую амплитуду потенциала действия нервного волокна в течение очень длительного времени.

Седьмой законзаключается в том, что в различных волокнах возбуждение распространяется с разной скоростью.Скорость проведения возбуждения зависит от сопротивления среды, окружающей волокно, от сопротивления аксоплазмы на единицу длины, сопротивления мембраны аксона и диаметра волокна. В миелинизированном волокне скорость проведения нервного импульса пропорциональна его диаметру. У немиелинизированного волокна скорость проведения возбуждения пропорциональна квадратному корню диаметра волокна. Таким образом, скорость проведения у миелинизированного волокна значительно выше.

 

Рис. 1-91. Законы проведения возбуждения по нервному волокну


Дата добавления: 2018-08-06; просмотров: 285; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!