Задачи на разрезание в пространстве. (иразризание куба, пирамиды и тд)



7. Задачи на раскраску. (для докозательства что некоторые задачи на разрезание не имеют решения)


Олимпиадные задачи. Перестановки.

Как правило, к олимпиадным задачам относятся так называемые «нестандартные» задачи, т.е. такие алгоритмы решения, которых явно не определены. К таким задачам относятся:

1. Стандартные по фабуле задачи школьной математики, но нестандартные по формам решения.

2. Нестандартные по фабуле и содержанию задачи, требующие анадиза предложенных ситуаций.

3. Олимпиадные и тематические задачи. Это задачи на определенную тему, не содержащуюся в программе школьного курса математики, но обязательно присутствующие в программе подготовки школьников к олимпиадам:

-Принцип Дирихле

-Инварианты

-игры

-стратегии

-графы

-процессы и операции и т.д.

Опр

Комбинации из n элементов отличающиеся друг от друга только порядком расположения в них элементов, называются перестановками из n элементов.

Перестановка – каждое расположение элементов мн-ва в определенном порядке.

Сколькими способами можно переставить nразличных элементов, расположенных в nместах.

Пример: сколькими способами можно раздать 5 различных конфет по одной 5 человек?

Решение: Для первого у нас есть 5 возможностей, для второго – четыри, для третьего – три, для четветого- две, и для последнего всего одна.

Значит количество способов равно 5*4*3*2*1=5!


 

Олимпиадные задачи. Геометрические инварианты.

Как правило, к олимпиадным задачам относятся так называемые «нестандартные» задачи, т.е. такие алгоритмы решения, которых явно не определены. К таким задачам относятся:

1. Стандартные по фабуле задачи школьной математики, но нестандартные по формам решения.

2. Нестандартные по фабуле и содержанию задачи, требующие анадиза предложенных ситуаций.

3. Олимпиадные и тематические задачи. Это задачи на определенную тему, не содержащуюся в программе школьного курса математики, но обязательно присутствующие в программе подготовки школьников к олимпиадам:

-Принцип Дирихле

-Инварианты

-игры

-стратегии

-графы

-процессы и операции и т.д.

Инварианты - числа, алгебраические выражения и т. п., связанные с каким-либо математическим объектом и остающиеся неизменными при определенных преобразованиях этого объекта или системы отсчёта, в которой описывается объект.

Чтобы охарактеризовать какую-либо геометрическую фигуру и её положение с помощью чисел, обычно приходится вводить некоторую вспомогательную систему отсчёта или систему координат. Полученные в такой системе числа x1, x2,..., xn характеризуют не только изучаемую геометрическую фигуру, но и её отношение к системе отсчёта, и при изменении этой системы фигуре будут отвечать другие числа x¢1, х¢2,..., х¢n. Поэтому если значение какого-либо выражения f (x1, x2,..., xn) характерно для фигуры самой по себе, то оно не должно зависеть от системы отсчёта, т. е. должно выполняться соотношение
f (x1, x2,..., xn) = f (x¢1, x¢2,..., x¢n). (1)

Все выражения, удовлетворяющие соотношению (1), называются инвариантами. Например, положение отрезка M1M2 на плоскости определяется в прямоугольной системе координат двумя парами чисел x1, y1 и x2, y2 - координатами его концовM1 и M2. При преобразовании координатной системы (путём смещения её начала и поворота осей) точки M1 и M2 получают другие координаты x¢1, у¢1 и x¢2, у¢2, однако (x1 - x2)2+ (y1 - y2)2 = (x¢1 - x¢2)2 + (y¢1 - у¢2)2. Поэтому выражение (x1 - x2)2 + (y1 - - y2)2 является Инварианты преобразования прямоугольных координат. Геометрический смысл этого Инварианты ясен: это квадрат длины отрезкаM1M2.

Инвариантами также может быть например площадь фигуры и др.

Пример задачи муравиь рассположенны в вершинах прямоугольника, бегают поочередно по прямой паралельной двум остающимся на месте. Можно ли рассположить муравьев в серединах сторон исходного квадрата? (Геометрический инвариант- площадь образованого муравьями треугольника остается неизменной)


 

Олимпиадные задачи. Раскраски.

Как правило, к олимпиадным задачам относятся так называемые «нестандартные» задачи, т.е. такие алгоритмы решения, которых явно не определены. К таким задачам относятся:

1. Стандартные по фабуле задачи школьной математики, но нестандартные по формам решения.

2. Нестандартные по фабуле и содержанию задачи, требующие анадиза предложенных ситуаций.

3. Олимпиадные и тематические задачи. Это задачи на определенную тему, не содержащуюся в программе школьного курса математики, но обязательно присутствующие в программе подготовки школьников к олимпиадам:

-Принцип Дирихле

-Инварианты

-игры

-стратегии

-графы

-процессы и операции и т.д.

Раскраскиявл. частью решения задачи с инвариантами.

Инвариантом называется некоторое преобразование величина или свойство не изменяется.

Для построения инвариантов иногда используют вспомогательные раскраски, т.е. разбиение рассматриваемых объектов на несколько групп.

Бывают задачи, где раскраска уже дана, например для шахматной доски, бывают задачи, где раскраску с данными свойствами нужно придумать, и бывают задачи, где раскраска используется как идея решения.

Пример 1. Из шахматной доски вырезали две противоположные угловые клетки. Докажите, что оставшуюся фигуру нельзя разрезать на «домино» из двух клеток

Решение. Каждая фигура «домино» содержит одну белую и одну чёрную клетку. Но в нашей фигуре 32 чёрных и 30 белых клеток (или наоборот).

Пример 2. Можно ли все клетки доски 9 × 9 обойти конем по одному разу и вер-нуться в исходную клетку?

Решение. Каждым ходом конь меняет цвет клетки, поэтому, если существует обход, то число чёрных клеток равно числу белых, что неверно.


 


Дата добавления: 2018-05-13; просмотров: 583; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!