Ферментативный гидролиз крахмала и гликогена



Углеводы относятся к наиболее распространенным орг. соед. входящих в состав всех живых организмов.в клетке животных тканей содержится около 2% сух.массы,в клетках растений до 80%.функции:1)эмпирическая в результате биол.окисления выделяется достаточно большое кол-во энергии(атф)которое исп. для фотосинтеза,биосинтеза жира,нк и белки.2)резервная.в раст.резервный углевод явл.крахмал,в орг. человека-гликоген.3)структурная и опорная.обеспечивается постороение клеточной мембраны.4)энтерсорбентная функция.очищают орг. от вредных веществ.5)гликопротеины-сложные белки.они учавст.в поддержании иммунетета.6)углеводы входят в состав коферементов.играет важную роль в метаболизме живых существ.Углеводы наряду с белками и липидами являются важнейшими химическими соединениями, входящими в состав живых организмов. У человека и животных углеводы выполняют важные функции: энергетическую, структурную и защитную.При окислении углеводов выделяется значительное количество энергии, которая накапливается в виде АТФ. Углеводы (рибоза и дезоксирибоза) используются для синтеза нуклеиновых кислот, они являются составными компонентами нуклеиновых коферментов, играющих исключительно важную роль в метаболизме у живых существ.Промежуточные продукты распада углеводов служат исходными веществами для синтеза других соединений, необходимых живой клетке.С нарушением обмена углеводов тесно связан ряд заболеваний: сахарный диабет, галактоземия и т.д.На долю углеводов приходится 60-70% пищевого рациона. Они содержатся преимущественно в растительных продуктах, являются основными компонентами хлеба, круп, макарон, кондитерских изделий, служат сырьем в бродильной промышленности, в производстве пищевых кислот: уксусной, молочной, лимонной. Классификация углеводов основана на структуре и физико-химических свойствах. Углеводы подразделяются на три основные группы: моносахариды, олигосахариды и полисахариды. Моносахариды(простые сахара) – углеводы, которые не способны гидролизоваться до более простых соединений. Олигосахариды(низкомолекулярные сахара) – углеводы, которые при гидролизе распадаются на 2-8 моносахарида.восстанавливающие и невосстанавливающие(дисахариды:мальтоза,лактоза,целлобиоза;трисахарид:рафиноза) Полисахариды (сложные сахара) – продукты конденсации моносахаридов, они способны гидролизоваться с образованием простых углеводов (от десятков до сотен тысяч молекул моносахаридов).( Если молекула полисахарида построена из остатков моносахаридов одного вида, то это – гомополисахариды (крахмал, гликоген, целлюлоза), если из разных моносахаридов – это гетерополисахариды (пектиновые вещества, камеди, слизи, мукополисахариды).) По химической природе простые сахара делят на: а) нейтральные сахара, содержащие только карбонильную и спиртовую группы; б) аминосахара, содержащие кроме этих групп аминогруппу, которая придает этим соединениям основные свойства; в) кислые сахара, содержащие кроме карбонильной и спиртовых групп карбоксильные группы   2.Моносахариды (монозы) классифицируют по количеству атомов углерода и по характеру карбонильной группы. По количеству атомов углерода различают: триозы – сахара с тремя атомами углерода, тетрозы – с четырьмя, пентозы – с пятью, гексозы – с шестью и т.д. Сахара, содержащие семь и более атомов углерода, называют высшими сахарами. Моносахариды, содержащие альдегидную группу, называют альдозами, кетонную – кетозами. Часто эти названия объединяют, чтобы одновременно показать и число углеродных атомов, и характер карбонильной группы. Например: глюкоза является альдогексозой, а фруктоза – кетогексозой, простейшей альдотриозой является глицериновый альдегид, а простейшей кетотриозой – дигидроксиацетон: Наиболее широко распространены в природе гексозы и пентозы. Среди пентоз набольшую роль играют арабиноза, ксилоза, рибоза и дезоксирибоза.Ксилоза и арабиноза встречаются в растениях в свободном виде, но содержатся в них, главным образом, в виде высокомолекулярных полисахаридов, называемых пентозанами. L-арабиноза широко распространена в растениях в качестве составной части слизей, гумми, пектиновых веществ и гемицеллюлоз. Арабинозу получают путем гидролиза вишневого клея или свекольного жома. Удельное вращение водных растворов арабинозы после окончания мутаротации +104,5°С, она не сбраживается дрожжами. Входит в состав многих растительных слизей, гумми и гемицеллюлоз. Образуется при кислотном гидролизе отрубей, соломы, древесины, хлопковой шелухи. Для кондитерской промышленности ксилозу получают в довольно значительных количествах путем кислотного гидролиза кукурузных кочерыжек. Обычными дрожжами ксилоза не сбраживается. Удельное вращение водных растворов после окончания мутаротации +18,8°С. При восстановлении ксилоза дает многоатомный спирт ксилит, его используют вместо сахара в питании больных сахарным диабетом. Д-рибоза Д-рибоза и Д-2-дезоксирибоза входят в состав нуклеиновых кислот, нуклеотидов. Производное рибозы – спирт рибит – является составной частью некоторых витаминов и ферментов.Важнейшими и широко представленными в природе гексозами являются глюкоза, фруктоза, галактоза, манноза. Д-глюкоза В свободном виде Д-глюкоза содержится в зеленых частях растений, семенах, различных фруктах и ягодах, меде. Входит в состав крахмала, клетчатки, гемицеллюлоз, гликогена, декстринов, сахарозы, мальтозы, рафинозы, многих глюкозидов. Глюкозу в больших количествах получают путем кислотного гидролиза картофельного или кукурузного крахмала, при этом глюкоза составляет основную массу патоки, широко применяемой в кондитерском производстве. Глюкоза хорошо сбраживается дрожжами. В водных растворах имеет удельное вращение +52,5°С. Д-фруктоза содержится во всех зеленых растениях, в нектаре цветов, меде. Особенно ее много в плодах, поэтому ее второе название – плодовый сахар. Фруктоза гораздо слаще других сахаров. В виде Д-фруктофуранозы входит в состав сахарозы, а также высокомолекулярных полисахаридов, образующих при гидролизе фруктозу. Эти полисахариды, получившие название полифруктозидов, встречаются в значительных количествах во многих растениях, особенно семейства сложноцветных: цикорий, земляная груша, кок-сагыз и др. Наиболее известен инулин, накапливающийся в качестве запасного углевода в клубнях земляной груши. Сбраживается дрожжами. Удельное вращение водного, равновесного раствора –92,4°С. Д-галактоза встречается в качестве составной части некоторых дисахаридов – лактозы (молочного сахара), мелибиозы и содержащегося в растениях трисахарида – рафинозы. Входит в состав многих высокомолекулярных полисахаридов: употребляемого в кондитерской промышленности агар-агара, различных гумми и слизей, а так же гемицеллюлоз. Галактоза сбраживается лишь так называемыми «лактозными дрожжами». Удельное вращение водных растворов +80,2°С. Д-манноза в растениях встречается в виде составной части различных высокомолекулярных полисахаридов – слизей и гемицеллюлоз. Маннозу обычно получают путем кислотного гидролиза гемицеллюлоз. Удельное вращение водных растворов +14,2°С. Сбраживается дрожжами.     3.Моносахариды, являясь альдо- или кетоспиртами, проявляют все свойства альдегидов, кетонов и спиртов.1)Образование гликозидов В результате взаимодействия гликозидного гидроксила моносахарида со спиртами, образуются соединения типа простых эфиров, которые называются гликозидами:Вновь образовавшаяся связь называется гликозидной.Гликозидная связь имеет очень важное биологическое значение. С помощью этой связи осуществляется ковалентное связывание моносахаридов в составе олиго- и полисахаридов:   В природе встречаются все виды гликозидных связей: a1®3; a1®2; a1®6; но каждый конкретный олиго- или полисахарид содержит определенный вид гликозидных связей между мономерными единицами. Кроме О-гликозидов в природе встречаются S-гликозиды (тиогликозиды) и N-гликозиды (нитрилгликозиды). Гликозиды широко распространены в растениях, они часто обладают специфическим запахом и вкусом. Например, гликозид синигрин, содержится в семенах горчицы, при гидролизе образует эфирное горчичное масло, придающее специфический вкус и аромат пищевой горчице. Гликозид глюкованилин синтезируется в ванильном дереве, амигдалин содержится в семенах миндаля, вишен, персиков.Для гидролитического расщепления гликозидов широко применяется ферментативный гидролиз, преимущество которго заключается в его специфичности. Например, фермент a-глюкозидаза из дрожжей расщепляет только a-гликозидную связь; b-глюкозидаза из миндаля – только b-гликозидную связь. На этом основании ферментативный гидролиз часто применяется в целях установления конфигурации аномерного атома углерода. Гидролиз гликозидов лежит в основе гидролитического расщепления полисахаридов, осуществляемого в организме, а также используется во многих промышленных процессах.2)Образование сложных эфировМоносахариды, реагируя с кислотами, могут давать сложные эфиры. Из производных сахаров наиболее важное биологическое значение имеют эфиры фосфорной кислоты. В клетке эти производные легко образуются при ферментативных реакциях: Наиболее важную роль в превращениях крахмала, а также в процессах дыхания и спиртового брожения играют глюкозо-6-фосфат, глюкозо-1-фосфат, фруктозо-6-фосфат, фруктозо-1,6-дифосфат. Донором фосфорной кислоты является АТФ, в молекуле которой расщепляется высокоэнергетическая связь. Биологическое значение сахарофосфатов состоит в том, что они представляют собой метаболически активные формы сахаров, играющие важную роль в биоэнергетике живой клетки. Фосфорилирование моносахаридов переводит их в мобильное реакционно-способное состояние, а при их биологическом окислении химическая энергия моносахарида аккумулируется в фосфатном радикале. Фосфорилирование выгодно клетке еще и потому, что клеточная мембрана малопроницаема для фосфорных эфиров моносахаридов, что очень важно для активного транспорта моносахаридов из внешней среды внутрь клетки.3)Образование нуклеозиддифосфатсахаров В биосинтезе олиго- и полисахаридов при взаимопревращениях моносахаридов важную роль играют нуклеозиддифосфатсахара (уридиндифосфаты).

Окисление моносахаридов

 При химическом или биологическом окислении концевых групп альдоз до карбоксильных, образуются три различных произвольных альдоз. Кислоты, образующиеся при окислении альдегидной группы, называются альдоновыми:

Эта реакция успешно используется в методах количественного определения моносахаридов.Если окислению подвергается концевая группа –СН2ОН, то при этом образуются уроновые кислоты:

Уроновые кислоты играют большую роль в качестве промежуточных продуктов при образовании пентоз из гексоз. Так, например, образующаяся при окислении глюкозы глюкуроновая кислота, подвергаясь декарбоксилированию, может дать ксилозу:

При декарбоксилировании галактуроновой кислоты образуется арабиноза.

Уроновые кислоты легко образуются в растениях и играют в них большую роль. Они входят в состав пектиновых веществ, некоторых растительных слизей и других сложных полисахаридов.При действии сильных окислителей окисляются обе концевые группы до карбоксильной, образуются альдаровые кислоты – глюкаровая, галактаровая и т.д., биологическая роль которых не установлена:

 

Восстановление моносахаридов

Карбонильная группа моносахаридов легко вступает в реакции восстановления с образованием сахароспиртов. В клетках растений, микроорганизмов это восстановление осуществляется при помощи ферментов (НАД – зависимых дегидрогеназ).Простейшим сахароспиртом является трехатомный спирт глицерин, образующийся при восстановлении глицеральдегида. Глюкоза при восстановлении дает шестиатомный сахароспирт сорбит, галактоза – дульцит, манноза – манит:

Сорбит часто встречается в различных фруктах, ягодах: в рябине, сливах, абрикосах, вишнях и др. Дульцит содержится во многих растениях, выделяется на поверхности коры деревьев. Манит содержится в бурых водорослях; плодах (ананас), овощах (морковке, луке).

 

 

4.К широко распространенным и имеющим важное значение как компоненты пищевых продуктов, относятся дисахариды: сахароза, лактоза, мальтоза и др.По химическому строению дисахариды являются гликозидами моносахаридов. Большинство дисахаридов состоят из гексоз, но в природе известны дисахариды, состоящие из одной молекулы гексозы и одной молекулы пентозы.При образовании дисахарида одна молекула моносахарида всегда образует связь со второй молекулой с помощью своего полуацетального гидроксила. Другая молекула моносахарида может соединяться либо также полуацетальным гидрокислом, либо одним из спиртовых гидроксилов. В последнем случае в молекуле дисахарида будет оставаться свободным один полуацетальный гидроксил.Отсутствие или наличие в молекуле свободного полуацетального гидроксила очень сильно влияет на свойства данного дисахарида. Если при образовании дисахарида обе молекулы участвовали в образовании простой эфирной связи своими полуацетальными гидрокислами, то у обоих остатков моносахаридов циклические формулы являются закрепленными и без гидролиза дисахарида и последующей окси- оксо-таутомерии карбонильная группа образоваться не может.Такой дисахарид не обладает восстанавливающими свойствами и не дает других альдегидных реакций: не образует гидразонов с фенилгидразином, не присоединяет синильной кислоты и т.д. и называется невосстанавливающим дисахаридом или типа гликозидо-гликозидом: Если же при образовании дисахарида одна молекула моносахарида участвовала своим полуацетальным гидроксилом, а вторая молекула моносахарида – спиртовым, то в молекуле дисахарида сохраняется один полуацетальный гидроксил. В этом случае циклическая форма одного из остатков моносахарида не является закрепленной и может в результате окси- оксо-таутомерии переходить в карбонильную форму. Такой дисахарид обладает восстанавливающими свойствами, способен к мутаротации, может кристаллизоваться в a- и b-формах, дает все типичные альдегидные реакции и называется восстанавливающим дисахаридом или типа гликозидо-гликозы:

Следует отметить, что свободный полуацетальный гидроксил может иметь как a-, так и b-конфигурацию (a-мальтоза, b-мальтоза). В природе встречаются все виды гликозидных связей: a(1®3), a(1®2), b(1®6), b(1®1) и т.д. Однако при этом каждый конкретный олигосахарид содержит определенный вид гликозидных связей между мономерными единицами. В некоторых случаях это единственное структурное отличие междуво всем остальном идентичными олигомерами.

Мальтоза– резервный олигосахарид– обнаружена во многих растениях в небольших количествах, в больших количествах накапливается в солоде – обычно в семенах ячменя, проросших в определенных условиях. Поэтому мальтозу часто называют солодовым сахаром. Мальтоза образуется в растительных и животных организмах в результате гидролиза крахмала под действием амилаз.

Мальтоза содержит два остатка Д-глюкопиранозы, соединенных между собой a(1®4)гликозидной связью.

Мальтоза обладает восстанавливающими свойствами, что используется при ее количественном определении. Она легко растворима в воде. Раствор обнаруживает мутаротацию.Под действием фермента a-глюкозидазы (мальтазы) солодовый сахар гидролизуется с образованием двух молекул глюкозы:

 

Мальтоза сбраживается дрожжами. Эта способность мальтозы используется в технологии бродильных производств при производстве пива, спирта этилового и т.д. из крахмалсодержащего сырья.

Целлобиоза.По строению целлобиоза состоит из 2х молекул b-Д глюкозы, но в отличие от мальтозы, связанных b-(1→4)-гликозидной связью:

 

Целлобиоза и мальтоза – это гомоолигосахариды; они состоят только из Д-глюкозы, но различаются природой гликозидной связи.

Целлобиоза служит структурным компонентом полисахарида целлюлозы и образуется из нее при гидролизе под действием фермента целлюлазы. Этот фермент отсутствует в организме человека, но продуцируется рядом микроорганизмов, а также активен в прорастающих семенах. В свободном виде целлобиоза содержится в пасоке некоторых деревьев.

  В молекуле целлобиозы имеется свободный гликозидный гидроксил, т.е. она является восстанавливающим дисахаридом.

Лактоза – резервный дисахарид (молочный сахар) – содержится в молоке (4-5%) и получается в сыроваренной промышленности из молочной сыворотки после отделения творога. Сбраживается лишь особыми лактозными дрожжами, содержащимися в кефире и кумысе. Лактоза построена из остатков b-Д-галактопиранозы и a-Д-глюкопиранозы, соединенных между собой b-(1→4)-гликозидной связью. Лактоза является восстанавливающим дисахаридом, причем свободный полуацетальный гидроксил принадлежит остатку глюкозы, а кислородный мостик связывает первый углеродный атом остатка галактозы с четвертым атомом углерода остатка глюкозы.

 

 

 

 Лактоза гидролизуется под действием фермента b-галактозидазы (лактазы):

 

Лактоза отличается от других сахаров отсутствием гигроскопичности – она не отсыревает. Молочный сахар применяется как фармацевтический препарат и как питательное средство для грудных детей. Водные растворы лактозы мутаротируют, лактоза имеет в 4-5 раз менее сладкий вкус, чем сахароза.

Содержание лактозы в женском молоке достигает 8%. Из женского молока выделено более 10 олигосахаридов, структурным фрагментом которых служит лактоза. Эти олигосахариды имеют большое значение для формирования кишечной флоры новорожденных, некоторые из них подавляют рост болезнетворных кишечных бактерий, в частности – лактулоза.При нагревании водных растворов лактозы до t0=1000С и выше (в щелочной среде до более низкой t0) происходит трансформация глюкозы во фруктозу и образуется лактулоза, представляющая собой β-Д-галактопиранозил (1→4)-Д-фруктофуранозу.

Лактулоза хорошо растворяется в воде (не кристаллизуется даже в концентрированных растворах, в 1,6-2 раза более сладкая чем лактоза, поэтому может применяться в качестве заменителя лактозы и сахарозы при выработке сухого молока, мороженного. Выяснено, что лактулоза стимулирует развитие бифидобактерий в кишечнике. В настоящее время лактулозу широко применяют во многих странах для выработки продуктов детского питания, в медицине – при лечении различных кишечных заболеваний, перспективно использование ее в хлебобулочных и кондитерских изделиях.

Сахароза(тростниковый сахар, свекловичный сахар) – это резервный дисахарид – чрезвычайно широко распространена в растениях, особенно много ее в корнеплодах свеклы (от 14 до 20%), а также в стеблях сахарного тростника (от 14 до 25%). Сахароза является транспортным сахаром, в виде которого углерод и энергия транспортируются по растению. Именно в виде сахарозы углеводы перемещаются из мест синтеза (листья) к месту, где они откладываются в запас (плоды, корнеплоды, семена).

Сахароза состоит из a-Д-глюкопиранозы и b-Д-фруктофуранозы, соединенных a-1®b-2-связью за счет гликозидных гидроксилов:

Сахароза не содержит свободного полуацетального гидроксила, поэтому она не способна к окси-оксо-таутомерии и является невосстанавливающим дисахаридом.

При нагревании с кислотами или под действием ферментов a-глюкозидазы и b-фруктофуранозидазы (инвертазы) сахароза гидролизуется с образованием смеси равных количеств глюкозы и фруктозы, которая называется инвертным сахаром.

  Дело в том, что раствор сахарозы имеет правое вращение (+65,5°), а образующаяся смесь Д-глюкозы и Д-фруктозы имеет левое вращение, благодаря превалирующему значению левого вращения Д-фруктозы (в равновесном состоянии +52,5° у Д-глюкозы и –92° у Д-фруктозы). Следовательно, по мере гидролиза сахарозы величина угла правого вращения постепенно уменьшается, проходит через нулевое значение, и в конце гидролиза раствор, содержащий равные количества глюкозы и фруктозы, приобретает устойчивое левое вращение. В связи с этим гидролизованную сахарозу называют инвертным сахаром, а сам процесс гидролиза – инверсией.Фермент b-фруктофуранозидаза широко распространен в природе, особенно активен он в дрожжах. Фермент находит применение в кондитерской промышленности, т.к. образующийся инвертный сахар препятствует кристаллизации сахарозы в кондитерских изделиях (в карамельной начинке).Кислотный гидролиз сахарозы происходит, например, при варке варенья и джема, что также препятствует кристаллизации сахарозы.При нагревании сахарозы до 190-200°С и выше происходит дегидратация сахарозы с образованием различных окрашенный полимерных продуктов- карамелей. Эти продукты под названием «колер» используются в коньячном производстве для придания окраски коньякам.

Трисахариды выделены из многих растений, где их содержание относительно невелико. Исключение представляет рафиноза, которая в значительных количествах содержится в семенах хлопчатника, в сахарной свекле. При хранении свеклы содержание рафинозы возрастает. При производстве сахара из свеклы она накапливается в больших количествах в мелассе. Рафинозу можно считать представителем семейства олигосахаридов, основу структуры которых составляет сахароза плюс один или более остатков Д-галактозы.

Гидролиз рафинозы может протекать при участии ферментов сахаразы и a-галактозидазы.

Схему ферментативного гидролиза можно представить:

 При действии фермента a-галактозидазы, содержащегося в эмульсине, рафиноза расщепляется на галактозу и сахарозу.

5.Полисахариды – высокомолекулярные углеводы, представляющие собой продукты конденсации моносахаридов, содержащие от нескольких десятков до сотен тысяч моносахаридов, соединенных гликозидными связями. Они могут быть как линейными, так и разветвленными. Если молекула полисахарида построена из остатков моносахаридов одного вида, то это – гомополисахариды (крахмал, гликоген, целлюлоза), если из разных моносахаридов – это гетерополисахариды (пектиновые вещества, камеди, слизи, мукополисахариды). В полисахаридах растительного происхождения между остатками моносахаридов в основном образуются (1®4)- и (1®6)-гликозидные связи, а в полисахаридах бактериального происхождения дополнительно имеются также (1®3) и (1®2)-гликозидные связи. На конце цепи полисахарида находится остаток восстанавливающего моносахарида. Поскольку доля концевого остатка относительно всей макромолекулы невелика, то полисахариды проявляют очень слабые восстановительные свойства.

Полисахариды имеют большую молекулярную массу. Им присущ характерный для высокомолекулярных веществ более высокий уровень структурной организации макромолекулы. Наряду с первичной структурой, т.е. определенной последовательностью мономерных остатков, важную роль играет вторичная структура, определяемая пространственным расположением макромолекулярной цепи.

В связи с биологической функцией полисахариды делятся на резервные и структурные. Большинство резервных полисахаридов (крахмал, гликоген, инулин) являются важнейшими компонентами пищевых продуктов, выполняя в организме человека функцию источника углерода и энергии. Структурные полисахариды (целлюлоза, гемицеллюлоза) в клеточных стенках растений образуют протяжные цепи, которые в свою очередь, укладываются в прочные волокна или пластины и служат своего рода каркасом в живом организме.

Крахмал – главный резервный полисахарид растений, запасается во многих семенах, клубнях, корневищах и используется только тогда, когда эти органы прорастают. В клубнях картофеля его содержится около 20%, кукурузе – 55-60%, ржи – около 70%.

Крахмал является одним из важнейших продуктов фотосинтеза, образующийся в зеленых листьях растений в виде так называемых первичных зерен. Затем он расщепляется на моносахариды или их фосфорнокислые эфиры и переносится в другие части растений, например, клубни картофеля или зерна злаков. Здесь вновь происходит отложение крахмала в виде зерен, форма и размер которых характерны для данного вида растений.Крахмал подобно белкам обладает гидрофильными свойствами, однако в холодной воде крахмальные зерна лишь набухают, но не растворяются. Если взвесь крахмальных зерен в воде постепенно нагревать, то они будут набухать все сильнее и при определенной температуре крахмал образует вязкий коллоидный раствор, называемый крахмальный клейстер.

Температура клейстеризации крахмала для разных растений неодинакова и находится в пределах 55-75°С.

Характерным свойством крахмала является его способность окрашиваться йодом в темно-синий цвет.Крахмал не является химически индивидуальным веществом. На 96-98% он состоит из полисахаридов. В нем найдены в небольшом количестве белки, высокомолекулярные жирные кислоты, минеральные кислоты (фосфорная и кремниевая), которые адсорбированы на крахмальных зернах.Полисахаридная фракция крахмала состоит из двух компонентов: амилозы и амилопектина.

Амилозалегко растворима в теплой воде и дает нестойкие растворы со сравнительно низкой вязкостью. Длительное хранение раствора амилозы на холоде приводит к выпадению ее в осадок. Этот процесс носит название ретроградации амилозы. Этим, отчасти, можно объяснить процесс черствения хлеба при его хранении.

Молекула амилозы имеет линейную структуру, представляет собой длинную цепочку из остатков a-D-глюкопиранозы, соединенных a(1®4)-гликозидными связями:

    Количество остатков глюкозы в каждой цепи колеблется от 100 до нескольких тысяч. По данным рентгеноструктурного анализа пространственная конформация цепной макромолекулы амилозы имеет форму спирали.

Такая форма обусловлена тем, что остатки a-Д-глюкозы в составе амилозы имеют конформацию лодки, которая способствует спирализации полигликозидной цепи.. На каждый виток спирали приходится 6 остатков глюкопиранозы. Во внутренний канал спирали могут входить соответствующие по размеру молекулы, например, молекулы йода образуют комплексы, называемые соединениями включения, комплекс амилозы с йодом имеет синий цвет. Это используется в аналитических целях для открытия как крахмала, так и йода.Амилопектин в отличие от амилозы имеет сильно разветвленную структуру. В его молекулу входит до 50.000 a-D-глюкопиранозных остатков. Наряду с a(1®4) связями в амилопектине имеются также a-(1®6) гликозидные связи, представляющие собой точки ветвления. Между точками ветвления располагается 20-25 глюкопиранозных остатков. Гликозидные a–(1®6) связи составляют около 5% от общего количества связей, содержащихся в молекуле амилопектина.

Методом рентгеноструктурного анализа показано, что структура амилопектина напоминает гроздь винограда.

 

Амилопектин с йодом дает красно-фиолетовое окрашивание.

Как в амилозе, так и в амилопектине, имеется только один восстанавливающий конец, при том его доля невелика, поэтому крахмал относят к нередуцирующим полисахаридам.

В крахмале большинства растений на долю амилопектина приходится 70-90%, остальные 10-30% составляет амилоза. Однако содержание этих компонентов может изменяться в зависимости от сорта растения, типа ткани, из которой он извлечен. Соотношение амилоза / амилопектин изменяется также во время созревания зерна. Крахмал некоторых культур может быть представлен только одним видом полисахарида, так, у яблок это амилоза, у восковидной кукурузы только амилопектин.

Гликоген –животный крахмал. Он содержится практически во всех органах и тканях животных и человека, наибольшее количество его обнаружено в печени и мышцах. Гликоген встречается и в растениях. Так, в кукурузе помимо обычного крахмала находится фитогликоген. Встречается гликоген в грибах и дрожжах. Контроль дрожжей на присутствие гликогена является важным показателем в бродильной технологии, по которому судят о физиологической активности дрожжей. По строению гликоген близок к амилопектину, характеризуется более разветвленной структурой, чем амилопектин. Его молекула построена из ветвящихся полиглюкозидных цепей, в которых остатки глюкозы соединены a-(1®4)-гликозидными связями, а в точках ветвления имеются a-(1®6) гликозидные связи. Линейные отрезки в молекуле гликогена включают 11-18 остатков, а точки ветвления у него встречаются через каждые 8-10 остатков.

Под действием йода гликоген окрашивается в красно-коричневый цвет.

Ферментативный гидролиз крахмала и гликогена

Ферментативный гидролиз крахмала и гликогена осуществляется с помощью ферментов класса гидролаз, подкласса карбогидраз, называемых амилазами: a-амилазы, b-амилазы и глюкоамилазы. Различаются они по свойствам, распространению в природе и способу действия на крахмал. Наиболее активные амилазы содержатся в слюне и соке поджелудочной железы животных и человека, в плесневых грибах, проросшем зерне. Обычно препараты амилазы получают из высушенного проросшего зерна (солод).

Амилазы гидролизуют как неизмененные крахмальные зерна, так и крахмальный клейстер. Атакуемость крахмала амилазами увеличивается с уменьшением размеров крахмальных зерен, т.е. с увеличением их относительной поверхности. Она резко возрастает при механическом нарушении стуктуры крахмальных зерен. Действие амилаз усиливается на клейстеризованный крахмал. Поэтому в целом ряде отраслей пищевой промышленности, например, спиртовой, осахаривание крахмала солодом производится лишь после заваривания муки или измельченного картофеля.

a-амилаза – фермент, гидролизующий a-(1®4)-гликозидные связи внутри молекулы амилозы или амилопектина без определенного порядка. В результате образуются продукты неполного гидролиза крахмала – a-декстрины – полисахариды разной молекулярной массы.

В соотвествии со свойствами различают следующие виды декстринов:

1. амилодекстрины – окрашиваются раствором йода в фиолетово-синий цвет;

2. эритродекстрины, окрашиваются йодом в красно-бурый цвет;

3. ахродекстрины – окрашиваются йодом в слабо-желтый цвет;

4. мальтодекстрины – не дают окрашивания с йодом.

a-амилазу называют декстринирующим ферментом. Она не расщепляет a-(1®6) гликозидные связи.

При действием a-амилазы на амилозу можно получить при полном гидролизе около 85% мальтозы и 15% глюкозы, при действии на амилопектин – около 70% мальтозы, 10% изомальтозы (молекулы глюкозы связаны a-(1®6) гликозидной связью) и 20% глюкозы.

Схематически действие a-амилазы на крахмал можно представить:

а)амилоза:

б) амилопектин

b-амилаза –фермент, который катализирует гидролиз крахмала и гликогена по a(1®4) гликозидной связи с нередуцирующих концов молекул. Она не расщепляет a(1®6) связи. В отличие от a-амилазы, b-амилаза действует упорядоченно и, начиная с нередуцирующего конца, отщепляет по молекуле мальтозы.

Амилозу b-амилаза расщепляет нацело, превращая ее на 100% в мальтозу. Если субстратом для действия b-амилазы служит амилопектин, то она расщепляет его на мальтозу и продукт неполного гидролиза, получивший название b-амилодекстрин, на оставшихся ответвлениях которого находятся a(1®6) гликозидные связи. Предельный декстрин гидролизуется b-амилазой только в том случае, если в реакционную смесь добавить a-амилазу. При совместном действии a- и b-амилаз на крахмал около 95% его превращается в мальтозу. Схема гидролиза крахмала под действием b-амилазы выглядит следующим образом:

 

  

 

a- и b-амилазы различаются по своему отношению к реакции среды: a-амилаза гораздо более чувствительна к подкислению. Отличаются эти ферменты также по термостабильности и температурному оптимуму: a-амилаза более устойчива к действию повышенных температур, ее температурный оптимум (~70°С) лежит несколько выше, чем оптимум b-амилазы (50~60°С).

Амилазы имеют большое значение в хлебопекарной, пивоваренной, спиртовой промышленности. Брожение теста и накопление в нем СО2, разрыхляющего его и придающего хлебу равномерную пористость и хороший объем, зависят от присутствия в тесте сбраживаемых дрожжами сахаров. В свою очередь, содержание сахара в тесте зависит не только от количества сахара, находящегося в муке, но также от скорости накопления мальтозы при действии амилазы на крахмал. С другой стороны, слишком энергичное действие a-амилазы, имеющейся в большом количестве в муке из проросшего пшеничного или ржаного зерна, вызывает избыточное накопление в тесте декстринов, придающих мякишу хлеба плохую эластичность, заминаемость, недостаточную пористость и неприятный вкус.

Поскольку a-амилаза весьма чувствительна к повышению кислотности и резко понижает при этом свою активность, то тесто надо замешивать на так называемых жидких дрожжах или молочнокислых заквасках. Это обеспечивает накопление в тесте повышенного количества молочной кислоты, угнетающей a-амилазу и нежелательное образование декстринов.

Напротив, в пивоваренной промышленности конечные декстрины необходимы в сусле, поскольку в дальнейшем создают полноту вкуса пива, в определенной степени обусловливают его пеностойкость.

Глюкоамилаза – фермент, действующий с нередуцирующих концов амилозы и амилопектина, отщепляет молекулу глюкозы. Глюкоамилаза расщепляет не только a-1,4-, но и a-1,6-гликозидные связи. Амилоза и амилопектин полностью превращаются в глюкозу.

 

 

Глюкоамилаза встречается у микромицетов рода Aspergillus, Rhizopus, из которых производятся промышленные препараты глюкоамилазы. Применяется глюкоамилаза в крахмалопаточной промышленности для получения глюкозы и глюкозной патоки.

В молекуле амилопектина расщепление α(1→6)-связей катализирует амилопектин-1,6-глюкозидаза, которая действует на точки ветвления.

В результате совместного действия этих ферментов происходит полныйгидролиз крахмала до глюкозы.

Целлюлоза

Целлюлоза (клетчатка) –структурный полисахарид, является основным компонентом клеточных стенок растений.

Целлюлоза придает растительной ткани механическую прочность и эластичность, выполняя роль опорного материала растений. В природе целлюлоза не встречается в чистом виде. Волокна хлопка содержат 96-98% целлюлозы, в различных видах древесины содержание ее составляет 40-60%. Волокна льна и конопли состоят преимущественно из клетчатки. Важнейшими спутниками целлюлозы являются лигнин, гемицеллюлозы, пектиновые вещества, смолы и жиры.

Структурной единицей целлюлозы является b-D-глюкопираноза, звенья которой связаны b-(1→4)-гликозидными связями. Это подтверждается тем, что при частичном гидролизе клетчатки образуется дисахарид целлобиоза, имеющий тоже b-(1→4)-гликозидную связь. Строение клетчатки можно выразить следующей формулой:

b-Д-глюкопираноза в составе клетчатки находится в креслообразной конформации. Это исключает возможность спирализации полиглюкозидной цепи, поэтому молекула целлюлозы сохраняет строго линейное строение.

В растительных клеточных стенках молекулы целлюлозы связаны друг с другом бок о бок, образуя структурные единицы, получившие названия микрофибрилл.

Каждая микрофибрилла состоит из пучка молекул целлюлозы, расположенных по ее длине параллельно друг другу.Рентгеноструктурные исследования показали, что в полимерной цепи остатки молекул глюкозы повернуты относительно друг друга на 180°С, что делает возможным образование водородных связей между ОН-группой при атоме С-3 одного глюкозного остатка и кислородом пиранозного кольца следующего остатка глюкозы. Это препятствует вращению расположенных рядом остатков глюкозы вокруг соединяющей их гликозидной связи. В результате образуется жесткая линейная и пространственная структуры.

Целлюлоза не растворяется в воде, но в ней набухает. Она не усваивается организмом человека, т.к. в организме не вырабатывается фермент, способный расщеплять b-гликозидную связь. Однако она является необходимым для нормального питания балластным веществом, выполняющим энтеросорбентную функцию. Целлюлоза усваивается травоядными животными, в желудочно-кишечном тракте которых находится специфическая микрофлора, вырабатывающая фермент целлюлазу.

Схему гидролиза целлюлозы можно представить:

Кислотный гидролиз целлюлозы при температуре 170°С приводит к образованию глюкозы, которая используется для получения кормовых дрожжей, этилового спирта. В промышленности из целлюлозы получают хлопчатобумажные ткани, бумагу и целый ряд химических продуктов: вискозу, целлоффан, кинопленку, ацетатный шелк и др.

Гемицеллюлозы

Гемицеллюлозы – это сложная смесь полисахаридов, не растворяющихся в воде, но растворимых в щелочных растворах. Гемицеллюлозы всегда сопутствуют целлюлозе, в больших количествах содержатся в соломе, семенах, отрубях, кукурузных початках, древесине. В комплексе с целлюлозой выполняют структурную функцию.Гемицеллюлозы могут быть подразделены на гексозаны (маннаны, галактаны) и пентозаны (арабаны, ксиланы). Продуктами гидролиза у различных гемицеллюлоз являются манноза, галактоза, арабиноза, ксилоза.Гемицеллюлозы пшеничных отрубей – это высокоразвитые ксиланы, состоящие в основном из Д-ксилозы, L-арабинозы и глюкуроновой кислоты.

Из гемицеллюлоз промышленное применение нашли галактоманнаны,  построенные из маннозы, образующей главную цепь, и галактозы, образующей короткие боковые цепи. Галактоманнаны обладают большой способностью связывать воду, поэтому они улучшают качество замеса, участвуют в формировании структуры теста, в частности, в формировании клейковины, тормозят черствение хлеба. Растворы галактоманнанов даже при концентрации 1% обладают высокой вязкостью, что объясняется вытянутой формой макромолекул и их склонностью образовывать в растворах крупные ассоциаты. Это свойство позволяет использовать их в качестве загустителей, стабилизаторов дисперсных систем, гелеобразователей.Галактоманнаны получают из семян бобовых культур.

Их используют при производстве различных пищевых продуктов, супов, соусов, мороженого, кремов, желе, напитков.Камеди и слизи.К полисахаридам близки камеди и слизи. В их состав входят сахара – арабиноза, ксилоза, галактоза, рамноза, а также глюкуроновая и галактуроновая кислоты.

Камеди образуют при набухании в воде вязкие гели или клейкие растворы, слизи при контакте с водой образуют слизистые массы. Камеди образуются в ответ на повреждения тканей растения в виде плотных блестящих натеков (вишневый, сливовый клей). Слизи содержатся в покровных тканях семян льна и зерновки ржи. Кроме защитной функции камеди и слизи могут повышать засухоустойчивость растения, способствуя удержанию влаги.Слизи имеют большое значение при переработке зерна ржи. Они повышают вязкость ржи при размоле, поэтому оно вымалывается труднее, чем пшеница и энергозатраты на размол у него выше. Слизи влияют на структурно-механические свойства в тесте, а, следовательно, и на качество хлеба.Мукополисахариды.Мукополисахариды получили свое название потому, что ряд веществ этого класса имеют слизистую консистенцию (от лат. mucus – слизь). Для мукополисахаридов характерно наличие их в молекулах значительного количества остатков аминосахаров и уроновых кислот. Это полисахариды соединительной ткани. Мукополисахариды обычно связаны с белками. Важнейшими представителями этой группы полисахаридов являются гиалуроновая кислота, хондроитин-серные кислоты и гепарин.

Гиалуроновая кислота построена из дисахаридных остатков, соединенных b-1,4-гликозидными связями. Дисахаридный фрагмент состоит из остатков D-глюкуроновой кислоты и N-ацетил-D-глюкозамина, связанных b-1,3-гликозидной связью:

      Гиалуроновая кислота имеет высокую молекулярную массу порядка 106, растворы ее обладают высокой вязкостью. Высокая вязкость гиалуроновой кислоты отчасти вызвана ее полианионным характером при физиологических значениях рН, которые способствуют гидратированию цепей и образованию между ними водородных связей. Вследствие высокой вязкости она понижает проницаемость тканевых оболочек и препятствует проникновению в ткани болезнетворных микроорганизмов. Особенно высоко ее содержание в коже, стекловидном теле глаза, сухожилиях. Гиалуроновой кислоте присущи не только структурные функции. Пронизывая ткани в качестве межклеточного вещества гиалуроновая кислота регулирует поступление в клетки тех соединений, которые или нужны для жизнедеятельности клетки или являются ее продуктом.

Хондроитинсульфат– непременная составляющая часть хряща, костной ткани, сухожилий, сердечных клапанов. Хондроитинсульфат прочно связан с белком коллагеном.

Хондроитинсульфаты состоят из дисахаридных остатков N-ацетилированного хондрозина, соединенных b-1,4-гликозидными связями. В состав хондрозина входят D-глюкуроновая кислота и D-галактозамин, связанные между собой b-1,3-гликозидной связью.

 

Как свидетельствует само название, эти полисахариды являются эфирами серной кислоты (сульфатами). Сульфатная группа образует эфирную связь с гидрокисльной группой N-ацетил-D-галактозамина, находящейся либо в 4-м, либо в 6-м положении. Соответственно различают хондроитин-4-сульфат и хондроитин-6-сульфат.

Наличие дополнительныхSO3-группировок сообщает еще больший полианионный характер хондроитинам.

Гепарин – гетерополисахарид, широко распространенный в тканях животного организма и особенно в значительных количествах содержащийся в печени, сердце, мышцах и легких. Ничтожные количества гепарина задерживают свертывание крови, т.е. он является сильным природным антикоагулянтом. Благодаря этому гепарин получил практическое применение в медицине.Гепарин состоит из повторяющихся дисахаридных единиц, в состав которых входят остатки D-глюкозамина и двух уроновых кислот – D-глюкуроновой и L-идуроновой (преобладает). Внутри дисахаридного фрагмента осуществляется a-1,4-связь, если фрагмент оканчивается L-идуроновой кислотой, и b-1,4-связь, если D-глюкуроновой кислотой.Аминогруппа у большинства глюкозаминных остатков сульфатирована, а у некоторых из них – ацетилирована.

8.Пектиновые вещества –это соединения, состоящие главным образом, из метоксилированной полигалактуроновой кислоты. Остатки галактуроновой кислоты соединены a-1,4 гликозидной связью. Вместе с целлюлозой, гемицеллюлозой и лигнином пектиновые вещества образуют клеточные стенки растений, являясь цементирующим материалом этих стенок, объединяют клетки в единое целое в том или ином органе растений.

 

     Различают три основные группы пектиновых веществ: протопектины, пектиновая кислота, пектаты, пектин.Для всех нерастворимых пектиновых веществ существует общее название – протопектин. Основным структурным компонентом протопектина служит галактуроновая кислота, из которой состоит главная цепь, в состав боковых цепей входят арабиноза, галактоза и рамноза. Часть кислотных групп галактуроновой кислоты этерифицирована метиловым спиртом.

В общем виде структуру протопектина можно представить схематически:

Протопектин легко расщепляется ферментом протопектиназой, переходя в растворимую форму – пектин.Пектиномназывают водорастворимое вещество, свободное от целлюлозы и гемицеллюлоз и состоящее из частично или полностью метоксилированных остатков полигалактуроновой кислоты (фрагмент структуры см. выше).Пектин содержит 100-200 остатков Д-галактуроновой кислоты. Определить степень метоксилирования затруднительно, так как эфирные связи при экстракции разрываются.При созревании и хранении плодов происходит переход нерастворимых форм пектина в растворимые. С этим явлением связано размягчение плодов.Пектиновая кислота –это цепь, состоящая из остатков Д-галактуроновой кислоты. Соли пектиновых кислот (чаще всего Са или Mg) называют пектатами. Большинство пектиновых кислот содержит от 5 до 100 этих остатков.

Пектиновые вещества содержатся в большом количестве в ягодах, плодах, клубнях. Важное свойство пектиновых веществ – способность их к желированию, т.е. свойство образовывать прочные студни в присутствии большого количества сахара (65-70%). Частичный гидролиз метиловых эфиров приводит к снижению желирующей способности. Пектиновая кислота не способна образовывать желе в присутствии сахара. Поэтому при промышленном получении пектиновых веществ процесс выделения пектина необходимо вести так, чтобы избежать гидролиза метоксильных групп, вызывающего снижение желирующей способности.На желирующей способности пектиновых веществ основано использование их в качестве студнеобразующего компонента в кондитерской промышленности для производства конфитюров, мармелада, пастилы, желе, джемов, а так же в консервной промышленности, хлебопечении.

Пектиновые вещества играют в пищевой промышленности и отрицательную роль. В свеклосахарном производстве пектиновая кислота и пектин из свекловичной стружки переходят в диффузионный сок, в котором при его дальнейшей очистке с помощью известкового молока образуются пектаты кальция, в результате чего резко возрастает вязкость очищенного сока, что затрудняет его фильтрацию.Пектиновые вещества расщепляются под действием ряда ферментов: протопектиназы, пектинэстеразы, полигалактоуроназы.Схематически ферментативный гидролиз протопектина можно представить так:


Дата добавления: 2018-05-02; просмотров: 1313; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!