Дифференциальные зависимости при изгибе.



Рассмотрим балку, загруженную произвольной распределенной нагрузкой. Двумя сечениями, отстоящими друг от друга на малую величину , выделим элементы. Внутренние силы, действующие в сечениях статически эквивалентны изгибающему моменту и поперечной силе. Мы рассматриваем  и  как функции z. При изменении независимой переменной на малую величину .  и  получат приращения, которые можно рассматривать как дифференциалы данных функций. Рассмотрим равновесие элемента.

Производная от поперечной силы по координате равняется по модулю интенсивности нагрузки, действующей на балку.

Пренебрегая малой второго порядка малости, получаем:

Производная от изгибающего момента по координате равняется поперечной силе.

 

Напряжения при чистом изгибе.

Допустим, что в данном случае в поперечных сечениях действуют лишь нормальные напряжения. Это допущение оказывается абсолютно точным, что подтверждается решением данной задачи методами теории упругости.

Рассмотрим балку, загруженную таким образом, что возникает нагружение чистого изгиба.

1) Рассмотрим вначале статическую сторону задачи.

Из 6 уравнений 3 удовлетворяются тождественно при любых значениях

Остаются 3 уравнения:

1)

2)

3)

Напряжения, рассматриваемые как функция координат:

должны удовлетворять статическим уравнениям (1-3).

Однако статических уравнений недостаточно для того, чтобы получить решение для напряжений. Надо рассмотреть еще деформации и принять закон, связывающие деформации и напряжения.

2) Геометрическая сторона задачи.

Характер деформации балки можно было бы наблюдать на модели из сильно деформируемого материала, например резины.

 Изгибая резиновый брус с сеткой нанесенной на боковой поверхности мы бы увидели картину, похожую на ту, что показана на рисунке.

Мы видим, что поперечные сечения, оставаясь прямыми и нормальными к искривленным поперечным линиям, наклоняются друг к другу.

Этот факт был замечен еще в 1705 г. Я.Бернулли, многократно подтвержден экспериментами и сформулирован в форме гипотезы плоских сечений, положенный в основу технической теории изгиба:

Сечения плоские и нормальные к оси балки до изгиба остаются плоскими и нормальными к изогнутой оси балки.

Пользуясь этой гипотезой, мы установим закон изменения удлинений волокон по высоте балки (под волокном понимаем мыслимый геометрический объект, а отнюдь не настаиваем на волокнистом строении материала.

Рассмотрим малый элемент. Очевидно, что верхние и нижние

волокна будут иметь разные по знаку деформации (в случае, показан-

ном на рисунке верхние волокна будут сжиматься, а нижние растягиваться), и т.к. деформация по своей сути – величина непрерывная, то

 безусловно, где-то будет находиться слой не испытывающий деформации – нейтральный слой.

Пусть  - радиус кривизны нейтрального слоя, а  - координата, отсчитываемая от нейтрального слоя.

Удлинение произвольного волокна равняется:

      В нашем случае  а

 (Напомним, что кривизна положительна, когда положительна координата кривизны). Чтобы привести знаки в соответствие с физическим смыслом запишем  аналитическая запись гипотезы плоских сечений.

3) Физическая сторона задачи.

Мы уже не раз говорили о том, что между напряжениями и деформациями существует связь, которая может быть установлена экспериментальным путем. Примем эту связь простейшей, т.е. будем считать, что материал линейно упруг, т.е. следует закону Гука.

Допустим, что волокна не давят друг на друга, а это для случая чистого изгиба совершенно точный факт, подтвержденный точным решением методами теории упругости, то тогда оказывается, что каждое волокно работает либо на растяжение, либо на сжатие, и в этой ситуации можно применить закон Гука:

Вернемся к статическим уравнениям (1-3) и подставим в них

выражение (5). Мы получим 3 уравнения, содержащие одну неизвестную величину .

Эта система будет совместна только при некоторых условиях.

Подставим в (1): , т.к.  (балка деформировалась и кривизна отлична от нуля), то , т.е. если поместить начало координат в центр тяжести сечения, то первое условие совместности будет удовлетворительно. Вспомним, что координата отсчитывалась от нейтрального слоя. Отсюда вывод: при изгибе нейтральный слой проходит через центр тяжести. Подставим в (2):

т.е. оси, в которых рассматривается изгиб, должны быть главными.

Итак! Приняв оси  и  за главные, центральные оси мы удовлетворяем уравнениям (1) и (2).

Осталось уравнение (3)    

- основная зависимость при изгибе.

Произведение модуля упругости на момент инерции называется жесткостью при изгибе.

Основную зависимость при изгибе можно сформулировать: кривизна прямо пропорциональна изгибающему моменту и обратно пропорциональна жесткости при изгибе.

Обратим внимание. Если чистый изгиб, то М-const и тогда изогнутая ось – дуга окружности. Подставим выражение для  в (5) и получим закон распределения нормальных напряжений:

Чаще всего в дальнейшем мы знаки напряжений будем расставлять по физическому смыслу и запишем, как это обычно принято в сопротивлении материалов.  

Проанализируем полученный закон распределения нормальных напряжений.

1) Мы видим, что напряжения не зависят от координаты , следовательно, по ширине сечения распределяются равномерно.

2) По высоте сечения нормальные напряжения распределяются линейно. На уровне центра тяжести они равны нулю, а максимальны по модулю в точке наиболее удаленной от нейтральной оси (следа на плоскости сечения нейтрального слоя). Если обозначить

, где  - расстояние от нейтральной оси до наиболее удаленной точки, то максимальное по модулю напряжение в сечении находится по формуле:    

Величина  называется моментом сопротивления.


Дата добавления: 2018-02-15; просмотров: 653; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!