ОТКУДА ВЗЯЛАСЬ ТЕМНАЯ МАТЕРИЯ ? 6 страница



В соответствии с квантовой физикой к «основным» волновым свойствам относятся [19]: «... частота v (или угловая частота ω = 2π v), длина волны λ и волновой фактор k, причем абсолютная величина его равна:

k = 2π/λ = 2πv/c = ω/c».                              (1.1)

Проведя формальные преобразования, покажем нали­чие волновых свойств в уравнениях классической меха­ники и справедливость уравнения (1.1) для «макромира» (естественно, что вместо скорости света с должна фигу­рировать скорость v). Используем для вывода волновых уравнений уравнение физического маятника [18]:

T = 2π√ l / g                                                         (1.2)

и уравнение по определению напряженности гравиполя g [18] (называемого ускорением свободного падения):

g = v 2 /R,                                                           (1.3)

где Т - период колебания маятника; l - длина нити подвеса; g - напряженность гравитационного поля (ус­корение свободного падения); v - первая космическая скорость; R - радиус Земли.

Известно, что из решения уравнения (1.2) невозможно получить точное значение периода колебания маятника. Однако если в (1.2) заменить l на R , то в результате ре­шения получим точную величину периода обращения Т спутника на околоземной орбите. Этот результат не «интересное совпадение» [18], а закономерное следст­вие математического описания свойств пульсирующей Земли. Такие же «совпадения» получаются при подста­новке в (1.2) параметров орбит спутников, Луны или планет Солнечной системы.

В уравнении (1.2) подкоренное выражение представ­ляет собой период пульсации Земли. Обозначим его че­рез τ и выведем другие зависимости для периода пуль­сации:

τ = √R/g,                                                           (1.4)

отсюда находим g :

g = R / τ 2 .                                                           (1.5)

Заменяем в (1.5) g на его значение из (1.3), после пре­образований получаем:

τ = R / v                                                               (1.6)

Из классической механики имеем [20]:

τ =1/ω,                                                             (1.7)

а также:

ω = 2π/τ = 2πυ.                                          (1.8)

Из (1.7) и (1.8) следует, что ω имеет одинаковые зна­чения (обозначает одно и то же свойство) в классиче­ской и квантовой механике. Подставляя из (1.7) и (1.8) значения τ и ω (1.6), имеем:

R = τ v = v/ω = Tv /2π υ .                                     (1.9)

Уравнения (1.9) показывает, что радиус любого тела есть не элементарный параметр (свойство), а составной, включающий, как и в квантовой механике [20], волновые свойства. При этом длина волны λ любой частицы рав­на:

λ = 2πR = Tv = 2πv/ω.                                     (1.10)

Таким образом, микрочастицы, как и частицы микро­мира, обладают волновыми свойствами. Вернемся к уравнению (1.1) и запишем его применительно к клас­сической механике:

k = 2π/λ = 2πv/υ = ω/v.                           (1.11)

Заменяя правую часть значением из (1.9), получаем: 

k = 1/ R ,                                                   (1.12)

что «волновой фактор» квантовой механики обратно пропорционален радиусу орбиты микротел.

Используя формулы (1.5) и (1.9) и проведя преобразо­вания, находим еще одну волновую зависимость для ус­корения свободного падения g (напряженности гравита­ционного поля):

g = a = v / τ                                                    (1.13)

Из уравнения (1.13) следует, что напряженность гра­витационного поля g включает в себя произведение волновых параметров τ или ω на линейную скорость гравиволны v той области пространства, для которого оно определяется. А поскольку а входит во второй закон И. Ньютона, то следует предположить, что не масса оп­ределяет механизм притяжения (в частности ¾ гра­витационного), а количественные параметры их вол­новых свойств.

Еще раз подчеркну, что наличие волновых свойств самопульсации у всех тел вне зависимости от их принадлежности к макро или микромиру является одним из основных отличий русской механики от всех остальных механик. Другим таким отличием яв­ляется вещественность пространства, образуемого телесным эфиром.

 

1.4. Телесная субстанция — эфир

 

Ранее отмечалось, что в классической механике про­странство есть абсолютное, неподвижное, однокачественное, независимое, самотождественное вмести­лище всего сущего, не взаимодействующее само с собой и с телами, в нее помещенными.

В русской механике анизотропное, эфирное вещест­венное пространство есть интегральная сумма индивидуальных различных подвижных мест-тел (почти по Аристотелю), обладающих бесчисленным многообрази­ем взаимообусловленных и взаимосвязанных качеств, взаимодействующее со всеми окружающими телами, входящими в данное пространство и равнозначными пространству.

Эфир как телесное пространство присутствовал в ги­потезах о природе со времен Древней Греции. Однако с появлением специальной теории относительности (СТО) наука постулати-вно отказалась от эфира как от вещественной среды, превра-тив пространство в пустую емкость, не имеющую свойств. Впятидесятых годах эксперименты начали фиксировать наличие у пус­тоты свойств среды. И вместо признания эфира было принято соломоново решение ввести понятие «пустой физический вакуум», нечто, имеющее некоторые свой­ства, но не являющееся вещественной средой. И хотя это понятие, сохраняя честь физического мундира, до сих пор остается, все больше и больше исследователей уходят от него к различным вариантам вещественного эфира [21-27]. Автор предлагает свою версию эфирного пространства (рис. 2).

Эфир — естественное состояние любой материи, самодвижущаяся анизотропная дисперсная среда, обладающая свойствами веществ, переносчик всех физических взаимодействий, включая гравитацион­ные. В пределах поверхности Земли и в ее окрестностях эфир, похоже, включает самодвижущиеся частицы, превышаю­щие по размеру атомы и состоящие из амеров.

Собственные колебания атомов эфира ¾ его само­движение и составляют нулевые колебания так на­зываемого вакуума (после-дние сейчас отвергаются как колебания вещественные). Атомы эфира имеют, как и обычные тела, бесконечный набор взаимосвязанных свойств, т.е. одинаковую качественную зависимость свойств, но численная величина каждого свойства у эфира своя.

Отличие самого эфира от весомого вещества состоит в том, что атом вещества имеет центральное ядро, со­размерное с ним в пределах пяти-восьми порядков и реагирующие на электромагнитные излучения, а атом эфира ¾ центральное сгущение и ядро на много поряд­ков меньшее по размеру, чем ядра атомов, что и обу­словливает его прозрачность для всех видов известных науке излучений.

Притяжение между частицами и их взаимодействия друг с другом передаются как пульсирующее вещест­венное (эфирное) проталкивание от нейтральных зон каждого структурного уровня (подробнее о нейтраль­ных зонах далее) внецентренно к сгущениям и фиксиру­ются физически как виды полей, различные для каждой структуры.

Структура вещественного эфира, образующего все пространство, включая космическое, представляет со­бой иерархию взаимопульсирующих материальных об­разований ячеистого типа различного уровня. Каждый структурный уровень состоит из аналогичных по физи­ческим параметрам ячеек и различается в такой после­довательности: ...вселен-ная,...группа галактик, ... галак­тика, ...созвездие, ...звездные (солнечные) системы,… небесные тела, молекулы, атомы, ..., амеры, ... и т.д. с бесконеч­ностью в обе стороны и с нейтральными слоями между ними (рис. 2).

Отмечу, что структурные уровни являются ранговыми составляющими вещественного пространства. Ячейки одного ранга, взаимодействуя между собой, почти не ощущают воздействия ячеек более высокого или более низкого ранга, поскольку это воздействие оказывается практически одновременным на всю образуемую ими область. Но в каждом ранге действуют одни и те же законы. Например, закон «всемирного притяжения» действует только в пределах Солнечной системы между телами, образуемыми молекулами. На молекулярном уровне действует аналогичный закон электромагнитных

Рис. 2.

взаимодействий Кулона. Повышается или понижается только ранг ячеек образуемых телами. Законы же взаимодействий остаются одинаковыми для каждого ранга. Именно это позволяет рассчитывать взаимодействие звезд и галактик по закону Ньютона.

Совокупность ячеек одного структурного уровня на большом, несопоставимом с их размерами расстоянии создает впечатление изотропности образуемого ими пространства. Это особенно заметно по расположению галактик и групп галактик, где каждая из них по отно­шению друг к другу представляет как бы ячейку.

Представление об изотропности пространства, полу­ченное только на основе геометрического — достаточно относительного и условного — равенства размеров близ­лежащих, а отчасти и отдаленных ячеек пространства, достаточно поверхностное и действительности не соот­ветствующее.

Некоторая относительная геометрическая соизме­римость элементов пространства может проявляться только в геометрической форме и только в нейтраль­ной зоне. Всякое движение из нейтральной зоны внутрь ячейки или наружу деформирует геометрическую соиз­меримость соседних ячеек, и сам измерительный инст­румент (рис.3).


Поскольку небесные тела-звезды мы отчетливо на­блюдаем в основном в пределах нашей галактики, соз­дается впечатление, что структура расположения этих звезд не соответствует структуре

Рис. 3.

расположения галак­тик, во-первых, потому, что расстояния между звездами, как и их размеры, отличаются большим разнообразием, а во-вторых, якобы из-за отсутствия отграниченности звезд друг от друга. Это отсутствие отграниченности кажущееся, оно обусловлено только нашим субъективным восприятием межзвездных взаимодействий. Мы не видим в ближайшем окружении Солнца никаких границ между ним и планетами, и потому нам представляется, что переход в пространстве от одной звезды к другой или от звезды к планете не имеет никаких границ и про­исходит в невещественном пространстве.

На самом деле все небесные тела «обволакиваются» эфирным уплотнением ¾ эфирной «шубой», пропорцио­нальной вещественной плотности окружающего про­странства и напряженности электрических и гравита­ционных полей. И между любыми небесными телами существует нейтральная пограничная зона из одинако­вой плотности и напряженности смежных гравитаци­онных полей. Это четко выраженная граница между небесными телами, которая определяет возможность гравитационного (волнового) воздействия поля одного тела на другое.

Размеры нейтральной зоны формируются параметра­ми каждого из тел и также обусловливают относитель­ную неизменность и пропорциональность расстояния между телами. Если количественные величины пара­метров каждого приграничного тела сопоставимы физи­чески, то для изменения расстояния между такими те­лами необходимо приложить внешнюю силу. Под действием собственной энергии они этого сделать не могут. Не позволяет нейтральная зона.

Следует особо подчеркнуть, что вещественность космического пространства предполагает существо­вание общего для всех тел и в то же время индивиду­ального по количественной величине в любом месте свойства ¾ удельной объемной плотности вещества ¾ эфира, образующего данный объем. Изучать небес­ные тела, их параметры, движение или излучение без представления об эфирной плотности пространства, в котором они находятся, и без учета взаимодействия с этим пространством просто невозможно. Все получен­ные результаты окажутся некорректными (подробнее об удельной плотности эфира далее).

Эфир как разновидность материи обладает тем же бесконечным набором свойств, которым обладают все вещественные тела. Различие между ними состоит в том, что у атомов эфира количественные величины свойств значительно отличаются от аналогичных вели­чин тел еще и тем, что они представляют по отношению к «осязаемой» нами и нашими приборами телам (мате­рии) сплошную среду других рангов. Такую среду, в ко­торой, например, практически плавают молекулы воз­духа, почти не прикасаясь друг с другом у поверхности Земли и испытывая взаимное прижатие только вследст­вие давления вышележащих молекул того же воздуха (атмосферное давление). Да и молекулы воды находятся достаточно близко друг к другу.

Именно признак «сплошности» относительно молеку­лярного уровня и обусловливает эфиру, с одной сторо­ны жесткое «образование» околоземного пространства, а с другой, необычайные свойства упругости, способст­вующие передаче поперечных колебаний в пространст­ве. К тому же атомы эфира, находящиеся в космосе над поверхностью Земли и обладающие объемными разме­рами, значительно отличающимися от молекул воздуха, имеют, как уже упоминалось, от ядра на расстоянии около 10-13 см только сгущение сво­ей плотности, «прозрачное» для проникновения всех из­вестных нам излучений, а в центре — псевдоядро диа­метром 1018-1020 см, которое и образует молекулу эфира (далее называемую псевдомолекулой). Такое псевдоядро никак не фиксируется всеми известными нам излучениями, оставаясь в то же время структурной основой эфирного атома.

Сами атомы эфира в своем большинстве практически «неподвижны» (в классическом смысле, т.е. не меняют положение относительно пространства), создавая, в сво­ей «общности», почти монолитную для себя структуру, отличающуюся тем, что элементы ее являются одновре­менно и элементами вещественной молекулярной струк­туры, образуя на ней (на электронах, протонах, фотонах, фононах и других элементарных частицах) «утолщения» — «шубы». Именно границы шубы оказываются тем «смазочным» материалом, который «ликвидирует» тре­ние между физическими телами и обеспечивает им воз­можность «свободного» перемещения в эфире, так же как и эфиру «свободно» проникать в эти тела.

Другим важнейшим свойством эфира, как и всех ве­щественных тел, является его постоянная самопульса­ция, способность передавать на полевом уровне и прак­тически без потерь множество колебательных (вибра­ционных) воздействий, воспринимаемых от самых разных осцилляторов. Самопульсация «монолитной» эфирной среды — основа передачи всех гравитацион­ных и электромагнитных взаимодействий и одно­временно та структура, которая обусловливает сущест­вование всех полей и возможность движения любых тел, от элементарных частиц до групп галактик и Все­ленной. Самопульсация и ее следствие волновое распространение взаимодействий в эфирной среде основа давления и приталкивания тел, основа всех видов притяжения. И следует отметить необычайно глубокую интуицию И. Ньютона, который в конце своей жизни пришел к выводу о том, что силы тяготения могут ока­заться следствием эфирного давления на материальные тела. В «Оптике» он констатирует [28]:

«Так градиент плотности эфира при переходе от тела в пространство применяется для объяснения тяготения, при этом эфир подразумевается состоящим из отдель­ных частиц... такое возрастание плотности, — пишет Ньютон, — на больших расстояниях может быть чрез­вычайно медленным; однако если упругая сила этой среды чрезвычайно велика, то этого возрастания может быть достаточно для того, чтобы устремлять тела от бо­лее плотных частей среды к более разряженным со всей той силой, которую мы называем тяготением».

Ньютон вновь ставит вопрос об атомистическом строении эфира:

«Если кто-нибудь предположит, что эфир (подобно нашему воздуху), может быть, содержит частицы, которые стремятся отталкиваться одна от другой (я не знаю, что такое этот эфир), что его частицы крайне малы сравнительно с частицами воздуха и даже света, то чрезвычайная малость этих частиц может способствовать величине силы, благо­даря которой частицы отталкиваются друг от друга, делая среду необычайно разряженной и упругой в срав­нении с воздухом и, следовательно, в ничтожной сте­пени способной к сопротивлению движениям брошен­ных тел и чрезвычайно способной вследствие стремле­ния к расширению давить на большие тела».

Таким образом, Ньютон сам указал возможность обойти затруднение, возникающее вследствие сопро­тивления эфира движению небесных тел.

«Если этот эфир предположить в 700 000 раз более упругим, чем наш воздух, и более чем в 700 000 раз раз­реженным, то сопротивление его будет в 600 000 000 раз меньшим, чем у воды. Столь малое сопротивление едва ли произведет заметное изменение движения планет за десять тысяч лет».

Удивительно, но его расчеты по порядку величин сов­падают с аналогичными расчетами свойств предлагае­мого эфира.

Существует убеждение, что атомы эфира, являясь час­тицами атомов, своими свойствами и в первую очередь способностью притяжения, совершенно отличаются от весомых тел. Если атомам присуща тяжесть, то амеры полностью лишены этого свойства. Данное убеждение — следствие распространения на эфир представления о том, что силы сопротивления тел внешнему сжатию, фиксируемые на поверхности Земли и других небесных тел как их вес, не фиксируются со стороны эфира. Эфирные атомы, как и все вещественные тела, сжима­ются внешним давлением и оказывают силовое сопро­тивление этому давлению. Но поскольку для эфира ве­сомые тела «прозрачны» и воспринимают воздействие объемно, то силы сопротивления их внешнему давле­нию приборно не фиксируются. И потому эфир как бы не имеет веса.

Все свойства атомов эфира, физические параметры, место в пространстве, форму взаимодействия с окру­жающими телами определяет структура их собственной пульсации и размеры относительно окружающих моле­кул. Место нахождения данных атомов у определенного тела обусловливает частоту пульсации, строго синхро­низованную с частотой пульсации тела (когда тело, пульсируя, возрастает, атомы эфира, его окружающие, в размерах уменьшаются, образуя в приграничном про­странстве гравитационную или электромагнитную вол­ну). Одновременно они пульсируют со своей частотой и с частотой передаваемых (внешних) вибрационных ко­лебаний, синхронизованной относительно своих ней­тральных зон, и потому являются передающей средой для всех видов полевых взаимодействий.

Более того, самопульсация атомов эфира приводит к высокой изотропности областей, образуемых этими эфирными частицами. Местонахождение частицы обу­словливается совпадением (или пропорциональностью) ее периода пульсации с периодом пульсации окружаю­щего пространства. Постоянное пульсирующее приталкивание атомов эфира, выполняющее функции при­жатия, приводит к тому, что пространственное поло­жение и геометрические размеры каждой частицы эфира определяются ее собственными энергетическими воз­можностями.


Дата добавления: 2018-11-24; просмотров: 47; ЗАКАЗАТЬ РАБОТУ