Стоит отметить важность соответствующих аксиом, так как множества и отношения между ними являются предметом изучения любой математической дисциплины



Укажем ещё одно важное открытие в теории множеств - изображение отношений между подмножествами, для наглядного представления [4]. Одним из первых, кто пользовался этим методом, был выдающийся немецкий математик и философ Готфрид Вильгельм Лейбниц. Затем этот метод довольно основательно развил и Леонард Эйлер. После Эйлера этот же метод разрабатывал чешский математик Бернард Больцано. Только в отличие от Эйлера он рисовал не круговые, а прямоугольные схемы. Методом кругов Эйлера пользовался и немецкий математик Эрнест Шредер. Но наибольшего расцвета графические методы достигли в сочинениях английского логика Джона Венна. В честь Венна вместо кругов Эйлера соответствующие рисунки называют иногда диаграммами Венна, а в некоторых книгах их называют также диаграммами Эйлера-Венна [4]. Диаграммы Эйлера-Венна используются не только в математике и логике, но и в менеджменте и других прикладных направлениях.

II. Отношения между множествами и способы их задания

 

Итак, под множествами понимается совокупность любых объектов, мыслимая как единое целое. Множества могут состоять их объектов самой различной природы. Их элементами могут быть буквы, атомы, числа, уравнения, точки, углы и т. д. Именно этим объясняется чрезвычайная широта теории множеств и ее приложение к самым разнообразным областям знания (математике, физике, экономике, лингвистике и т. д.).

Считают, что множество определяется своими элементами, то есть множество задано, если о любом объекте можно сказать, принадлежит он этому множеству или не принадлежит. Различают два способа задания множеств.

1. Множество можно задать с помощью перечисления элементов.

Например, если множество А состоит из элементов а, b, с, то пишут: А = {a, b, c}.

Не каждое множество можно задать с помощью перечисления элементов. Множества, все элементы которых можно перечислить называют конечными. Множества, все элементы которых нельзя перечислить называют бесконечными. Их нельзя задать с помощью перечисления элементов. Исключение составляют бесконечные множества, в которых ясен порядок образование каждого следующего элемента на основе предыдущего. Например, множество натуральных чисел – бесконечное множество. Но известно, что в нем каждое следующее число, начиная со второго, на 1 больше предыдущего. Поэтому можно задать так N = {1, 2, 3, 4, …}.

2. Множество можно задать с помощью указания характеристического свойства.

Характеристическим свойством данного множества называется свойство, которым обладают все элементы этого множества и не обладают ни один, не принадлежащий ему элемент. Обозначается: А = {x|…}, где после вертикальной черты записывается характеристическое свойство элементов данного множества.

Например, В={1,2,3}. Нетрудно заметить, что каждый элемент множества В – натуральное число, меньшее 4. Именно это свойство элементов множества В является для него характеристическим. В этом случае пишут: и читают: «Множество В состоит из таких элементов х, что х принадлежит множеству натуральных чисел и х меньше четырех» или множество В состоит из натуральных чисел, меньших 4. Множество В можно задать и по – другому: или , и т.д.

При этом, если элемент не подчиняется характеристическому свойству множества, то он данному множеству и не принадлежит. Существуют множества, которые можно задать только с помощью указания характеристического свойства, например, .

Особую важность в школьном курсе математике имеют числовые множества, т.е. множества, элементами которого являются числа [2]. Для названия числовых множеств в математике приняты специальные обозначения:

N = {1, 2, 3, 4, …} – множество натуральных чисел;

Z = {…,-4, -3, -2, -1, 0, 1, 2, 3, 4, …} – множество целых чисел (содержит все натуральные числа и числа, им противоположные);

Q = {x | x=p/q, где p∈Z, q∈N} – множество рациональных чисел (состоит из чисел, допускающих представление в виде обыкновенной дроби);

J – множество иррациональных чисел (множество, состоящее из бесконечных десятичных непериодических дробей, например: 1,23456342…; , и др.)

R = (-∞; +∞) – множество действительных чисел.

Множество всех действительных чисел Л. Эйлер изобразил с помощью кругов. (Рис. 1)

Cтоит отметить, что все любые числовые множества можно задать с помощью числового промежутка. (Рис. 2)

Типы числовых промежутков

Множество С, рассмотренное выше, это числовое множество и его можно указать с помощью числового промежутка (Рис. 3)

 

Рисунок 3 – Числовой промежуток

 


Дата добавления: 2018-04-04; просмотров: 318; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!