Осмотические свойства растворов электролитов. Изотонический коэффициент



Электролиты – вещества, молекулы которых распадаются в водных растворах и расплавах с образованием заряженных частиц –ионов. К электролитам относятся все соли, щелочи, растворимые кислоты. Реальные растворы электролитов, в отличие от растворов неэлектролитов, по своим свойствам отличаются от идеальных. Так для растворов электролитов экспериментально найденные значения коллигативных характеристик всегда больше, чем рассчитанные по законам Вант-Гоффа и Рауля. Т.е., растворы электролитов на практике ведут себя так, как будто они содержат больше частиц растворенного вещества, чем это следует из их аналитической концентрации. Исходя из этого, Вант-Гофф предложил для растворов электролитов при теоретическом расчете Росм., tкип., Δtзам., использовать поправочный коэффициент i, который получил название коэффициента Вант-Гоффа или изотонического коэффициента:

Росм. = iCRT; Δtкип. = iEm; Δtзам. = iKm;

где С – молярная концентрация растворенного вещества, m- моляльная концентрация растворенного вещества, Е и К – соотвественно, эбулиоскопическая и криоскопическая константы.

Изотонический коэффициент показывает, во сколько раз реальное число частиц растворенного вещества больше чем теоретически ожидаемое (если предполагать, что вещество в растворе присутствует только в виде молекул).

Для идеальных растворов электролитов i >1.

Изотонический коэффициент показывает также, во сколько раз наблюдаемое опытное значение Росм., Δtкип., Δtзам., больше теоретически вычисленного. Причину отклонения растворов электролитов от законов Рауля и Вант-Гоффа впервые объяснил шведский ученый С. Аррениус. Он показал, что электролиты за счет действия молекул растворителя распадаются на ионы. Этот процесс приводит к увеличению реального числа частиц растворенного вещества.

Максимально значение изотонического коэффициента (imax) для любого электролита будет при этом равно числу ионов, которые образуются при полной диссоциации его молекулы (или формульной единицы), т.к. именно во столько раз возрастет число частиц электролита в растворе.

Так, для NaCl imax = 2, для Na3PO4 imax = 4.

В реальных растворах диссоциация часто протекает не полностью, особенно если электролит является слабым. Кроме того, наблюдаются межионные взаимодействия, приводящие к уменьшению числа кинетически активных частиц. В этом случае величина i будет меньше его возможного максимального значения и будет зависеть от степени диссоциации электролита:

i = 1 + α (m - 1)

где α - степень диссоциации электролита (в долях единицы); m - число ионов, образующихся при полном распаде одной молекулы или одной формульной единицы электролита.

Таким образом, из двух растворов однотипных электролитов (т.е. распадающихся на одно и то же число ионов) с одинаковой молярной (моляльной) концентрацией изотонический коэффициент будет больше в растворе электролита с более высокой степенью диссоциации α. Соответственно и росм., Δtкип., Δtзам. для такого раствора тоже будут иметь большие значения. Если же молярная концентрация и степень диссоциации электролитов разного типа в растворе одинаковые, то значение i будет выше для электролита, диссоциирующего на большее число ионов m.

5. Гипо-, гипер-, изотонические растворы. Понятие об изоосмии (электролитном гомеостазе). Осмоляльность и осмолярность биологических жидкостей.

Растворы, осмотическое давление которых равно осмотическому давлению раствора принятого за стандарт, называются изотоническими. В медицине осмотическое давление растворов сравнивают с осмотическим давлением крови. Изотоническими по отношению к крови являются 0,9% (0,15 М) раствор NaCl и 4,5-5% раствор глюкозы. В этих растворах концентрация частиц растворенного вещества такая же, как и в плазме крови. Растворы, обладающие более высоким осмотическим давлением, чем плазма крови, называются гипертоническими, а растворы, имеющие более низкое давление - гипотоническими. При различных лечебных процедурах в кровь человека в больших количествах следует вводить только изотонические растворы, чтобы не вызвать осмотический конфликт из-за резкого несоответствия между осмотическим давлением биологической жидкости и вводимого раствора.

Кровь, лимфа, тканевые жидкости человека представляют собой водные растворы молекул и ионов многих веществ и обладают вследствие этого определенным осмотическим давлением. Причем на протяжении всей жизни организма биологические жидкости сохраняют свое давление на постоянном уровне независимо от состояния внешней среды. Это явление называется иначе изоосмией человеческого организма и является составной частью более общего процесса - гомеостаза или постоянства ряда физико-химических показателей внутренней среды человека в изменяющихся внешних условиях. Изоосмия особенно присуща таким биологическим жидкостям как кровь и лимфа. Так осмотическое давление крови у человека практически постоянно и при 37оС изменяется в пределах 740-780 кПа (т.е., почти в 8 раз больше атмосферного). При изменении осмотического давления крови организм стремится восстановить его, удалив из крови избыточное количество растворенных частиц (если давление повышается) или, наоборот, увеличивая число кинетически активных частиц (если давление понижается). Основную роль в регуляции осмотического давления крови играют почки. Изоосмия регулируется, прежде всего, центральной нервной системой и деятельностью желез внутренней секреции.

В состав биологических жидкостей входит целый ряд веществ. Их суммарная концентрация носит название осмолярности(изотонической концентрации) и представляет собой химическое количество всех кинетически активных (т.е., способных к самостоятельному движению) частиц (независимо от их формы, размеров и природы), содержащихся в 1 литре жидкости и не проникающих через полупроницаемую мембрану. Осмолярность выражается в миллиосмолях на литр (мосм/л). В норме показатели осмолярности плазмы крови составляют 280-300 мосм/л, для спинно-мозговой жидкости – 270-290 мосм/л, для мочи – 600-1200 мосм/л. Осмоляльность — концентрация тех же частиц, растворенных в килограмме биологической жидкости, выра­жающаяся в миллиосмолях на килограмм (мосм/кг). В норме общая внутриклеточная осмоляльность зависит главным образом от концентрации ионов К+ и ассоциированных с ними анионов и равна осмоляльности внеклеточной жидкости, определяемой ионами Nа+ и ассоциированными анионами. Поэтому общее перемещение воды в клетки или из них не происходит. Осмолярное равновесие поддерживается несколькими физиологическими механиз­мами, которые могут нарушаться при критических состояниях: движением воды в сторону повышенной концентрации ионов, почечной экскрецией осмотически активных веществ (мочевина, соли), удалением СО2 через легкие, антидиуретическим гормоном.
6. Роль осмоса в биологических системах. Плазмолиз и цитолиз. Зависимость степени гемолиза эритроцитов от концентрации раствора NaCl.

Причиной возникновения осмотических явлений в организме является то, что все биологические жидкости представляют собой водные растворы электролитов и неэлектролитов, а клеточные мембраны можно рассматривать как полупроницаемые. Осмос играет ведущую роль в распределении воды между внутри- и внеклеточным содержимым, между различными тканями и системами тканей, образующих органы. Оболочка клетки полупроницаема и через нее достаточно свободно проходит вода. Ионы электролитов и молекулы других веществ оболочка пропускает строго избирательно. Снаружи клетки омываются межклеточной жидкостью, тоже представляющей собой водный раствор. Причем концентрация растворенных веществ внутри клеток больше чем в межклеточной жидкости. Вследствие осмоса наблюдается переход растворителя из внешней среды в клетку, что вызывает ее частичное набухание или тургор. При этом клетка приобретает соответствующую упругость и эластичность. Тургор способствует сохранению определенной формы органов у животных организмов, стеблей и листьев у растений.

Если клетка попадает в среду раствора с повышенной концентрацией солей и других растворимых веществ (гипертонический раствор), то это приводит к осмосу, при котором вода диффундирует из клетки в раствор. Если в такой гипертонический раствор попадает клетка, имеющая прочную целлюлозную оболочку, то происходит явление плазмолиза – сжимание протопласта и отделение его от клеточных стенок. В случае животных клеток, имеющих пластичную оболочку (например, эритроцитов), происходит общее сжимание, сморщивание клетки. Ши-роко известно применение больших концентраций  солей или сахара для консервирования пищевых продуктов. В этих условиях микроорганизмы подвергаются плазмолизу и становятся нежизнеспособными. Если клетка попадает в среду раствора с пониженной концентрацией веществ (гипотонический раствор), то это приводит к осмосу, при котором вода диффундирует из раствора в клетку, что ведет к ее набуханию. Если разница в концентрациях внутри- и внеклеточной жидкостей достаточно велика и клетка не имеет прочных стенок, происходит разрушение клеточной мембраны с выделением в окружающий раствор ее содержимого – цитолиз. В случае разрушения эритроцитарной мембраны и выхода в окружающую среду содержимого эритроцита явление называется осмотическим шоком (гемолиз).

Показателем прочности эритроцитов служит их осмотическая стойкость, т.е. способность противостоять понижению осмотического давления. Мерой осмотической стойкости эритроцитов является концентрация NaCl, при которой начинается гемолиз. У человека это происходит в 0,4%-ном растворе NaCl (минимальная осмотическая резистентность), а в 0,34%-ном растворе разрушаются все эритроциты и наступает полный гемолиз крови (максимальная осмотическая резистентность).

Эритроциты в крови каждого индивидуума по критерию осмотической стойкости распределены по закону Гаусса. Поэтому одним из главных параметров, характеризующих осмотические свойства эритроцитов в суспензии, является среднее значение т.н. осмотической хрупкости, численно равное концентрации NaCl, при которой происходит лизис 50% клеток.(рис).

 


Дата добавления: 2018-02-28; просмотров: 10688; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!