Расчеты статически неопределимых систем. Метод сил.



Основные определения

Статически неопределимые балки и рамы – конструкции, в которых уравнений статики недостаточно для определения опорных реакций и внутренних усилий. Число связей, наложенных на статически неопределимую систему,больше того количества связей, которые обеспечивают геометрическую неизменяемость конструкции. Такими связями могут быть как опорные связи, так и стержни самой конструкции.

балкии простые рамы, то есть такие конструкции, в которых связями, обеспечивающими геометрическую неизменяемость, являются опорные закрепления (опорные связи). Для обеспечения геометрической неизменяемости балки (рамы) в плоскости достаточно трех связей. Каждая связь запрещает какое-то перемещение. Шарнирно-подвижная опора запрещает перемещение по направлению, перпендикулярному плоскости опирания, и является одной связью. Шарнирно-неподвижная опора делает невозможными линейные перемещения по двум взаимно-перпендикулярным направлениям (вертикальному и горизонтальному) и соответствует двум связям, наложенным на конструкцию. Наконец, при наличии жесткого защемления на конце стержня становятся невозможными все перемещения: и вертикальное, и горизонтальное, и угол поворота, поэтому жесткое защемление представляет собой три связи, обеспечивающие геометрическую неизменяемость балки (рамы). Каждая дополнительная связь сверх трех для плоских систем превращает конструкцию в статически неопределимую. Такие дополнительные связи, которые не являются необходимыми для обеспечения геометрической неизменяемости конструкции, называются лишними.

Перед расчетом статически неопределимой конструкции необходимо сначала определить степень статической неопределимостирассматриваемойсистемы. Для балок и простых рам степень статической неопределимости равна числу лишних опорных связей. В каждой связи возникает опорная реакция, поэтому степень статической неопределимости можно найти, сосчитав разность между количеством неизвестных опорных реакций и числом независимых уравнений статики.

 

Рис. 4.33. К расчету статически неопределимой балки с шарниром:

а – заданная статически неопределимая балка;

б – основная система и условие совместности деформаций (вариант 1);

в – основная система и условие совместности деформаций (вариант 2)

 

Метод сил

Он заключается в том, что заданная статически неопределимая система освобождается от дополнительных связей как внешних, так и взаимных, а их действие заменяется силами и моментами. Величина их в дальнейшем подбирается так, чтобы перемещения в системе соответствовали тем ограничениям, которые накладываются на систему отброшенными связями. Таким образом, при указанном способе решения неизвестными оказываются силы. Отсюда и название «метод сил».

 

Метод сил

Суть этого метода заключается в том, что заданная статически неопределимая Система, освобожденная от дополнительных связей, становится статически определимой. Она носит название основной систе­мы. Для каждой статически неопределимой заданной системы (рис. 6.9, а) можно подобрать, как правило, различные основные системы (рис. 6.9, б, в), однако их должно объединять следующее условие - основная система должна быть статически определимой и геометрически неизменяемой (т.е. не должна менять свою гео­метрию без деформаций элементов).

Рис. 6.9

Рассмотрим систему, которая дважды статически неопределима (рис. 6.10, а). Заменим в основной системе действие отброшенных связей неизвестными усилиями X1 иX2 (рис. 6.10, б). Принятая основная система будет работать также, как и заданная, если на нее наложить условие отсутствия вертикальных перемещений в точках A и B(т.е. в тех местах, где в заданной системе стоят опоры):

(6.9)

Рис. 6.10

Уравнения (6.9) называются уравнениями совместности деформаций и при их выполнении фактически устанавливается условие эквивалентности между заданной и основной си­стемой при действии внешней силы Р и неиз­вестных усилий X1 и X2 . На основании принципа независимости действия сил (6.9) можно представить в следующем виде:

(6.10)

где yA(P), yB(P), yA(X1), yB(X1), yA(X2), yB(X2) - вертикальные пере­мещения точек А и В основной системы соответственно от дейст­вия сил Р, Х1, Х2.

Вводя обозначения d11, d12, D1P - вертикальные перемещения точки А основной системы, соответственно, от последовательного действия сил X1 = 1, X2 = 1, от внешней силы Р; d21, d22, D2P -вертикальные перемещения точки B основной системы, соответст­венно, от последовательного действия сил X1 = 1, X2 = 1, от внеш­ней силы Р, и учитывая существование линейности связи между силой и перемещением, систему уравнений (6.3) можно преобразо­вать в канонической форме:

(6.11)

Последние уравнения носят названия канонических урав­нений метода сил.

Для вычисления коэффициентов при неизвестных X1 и X2 ис­пользуют формулу Мора:

, (i, j = 1,2). (6.12)

Легко видеть, что , это свойство называется законом парности коэффициентов при неизвестных. Свободные же коэффициенты определяются по формуле:

. (6.13)

После решения системы (6.11) определяются величины неизве­стных усилий X1 и X2 . Если их значения получились отрицатель­ными, это означает, что реально они действуют в направлении про­тивоположном принятому. Окончательная эпюра моментов опреде­ляется по зависимости

. (6.14)

Эпюра поперечных сил QOK может быть построена по эпюре моментов МОК с использованием зависимости и величин приложенных к системе усилий.


Дата добавления: 2018-02-15; просмотров: 874; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!