Краткий анализ основ геометрий 40 страница



Выше показаны гомотетические деформации пирамид при перемещении точки опоры в другую область пространства. Причем элементы пирамид по высоте деформировали трехчастным образом, т.е. три последовательных элемента в деформации соблюдали вурфную пропорцию. Это основная особенность трехчленного вурфного деления. Именно она превалирует в уравнении (5.22). И может оказаться особенно важным при рассмотрении физических явлений. Следует отметить, что древнерусские зодчие были не просто знакомы с существованием вурфов, но и в своей повседневной работе постоянно использовали их. Так, на единственном и необычном измерительном инструменте XIII века, обнаруженном при археологических раскопках в Новгороде, на трех гранях нанесены деления, равные a = 5,919 см; b = 7,317 см; с = 8,358 см [38].

Соотношения деления таковы: 2a/b = 1,618 = Ф, 4а/3b = 0,944 (третье число влево в строке 0,5 матрицы 2 - Авт.).

«Суть инструмента состояла в том, чтобы целыми числами его деления строить не только эстетически совершенные виды архитектурных пропорций (невозможные по причине их иррациональности), но и широкий класс трехчастных вурфных пропорций. Если взять по одному делению в возрастающем порядке, то вычисляется вурф W(5,919; 7,318; 8,358), или в буквенном обозначении W(a,b,c) = 1,31; 1,309 = Ф2/2».

Таким образом, наиболее простое соотношение деления сразу же определяется через золотой вурф.

Что же дает архитектуре пропорционирование конструкции в соответствии с золотым вурфом? Ведь в отличие от изменяющегося со временем организма, она остается всегда неизменной.

Однако неизменность конструкции на самом деле оказывается кажущейся (рис. 72.). Наблюдатель всегда перемещается относительно конструкции и рассматривает ее под самыми различными углами зрения. И если конструкция имеет вурфное отношение трехчленного деления, то, как бы ни перемещался наблюдатель относительно ее, угол зрения всегда будет иметь одно и то же значение вурфа, сохраняя для него гармоничную структуру рассматриваемого сооружения [38].

Именно гармоничность архитектурных сооружений, как некоторых аналогов природных образований, вписывается в пространственные и энергетические взаимодействия природы и обусловливает благотворное влияние Среды на психическое и социальное состояние человеческого общества.

Мы остановились довольно подробно на примере применения вурфов в биологии и архитектуре, во-первых, потому, что они очень наглядны и отображают процесс взаимосвязи явлений во времени и в движении, а во-вторых, потому, что применение системы вурфов находится в стадии становления, и не вышло, по-видимому, за пределы этих научных направлений.

Нахождение золотого вурфа W = 1,309 и вурфа W = 1,250 на основе золотых пропорций следует отнести к числу серьезных научных достижений В.Петухова [37]. Но природа не ограничивается этими вурфами и золотой пропорцией числа Ф. Все числовые структуры диагоналей класса русских матриц − числа базисных  столбцов  и строк при любых знаменателях так же образуют свои вурфы и по пропорции (5.22), и по бесчисленному количеству других диагональных пропорций.

Значение вурфа и возможность его применения в биологии показана в работе [37], в архитектуре - в работах [31, 39], однако это весьма скромное начало. Вурф - понятие общенаучное и обусловливает гармоничное пропорционирование всех процессов и структур природы. Приведем пример наличия вурфных отношений в сугубо физической сфере, в пропорциях спектральных линий водорода. Наиболее известными спектральными линиями водорода являются серии Лаймана, Бальмера, Пашена. Запишем их в таблицу.

Таблица

1215,67    
1025,70 6562,80  
972,54 4861,30 18751
949,74 4340,65 12818
937,80 4101,70 10938
930,75 3970,00 10049
926,23 3889,10 9546
923,15 3835,40 9229
920,96 3797,90 9014,9

 

Просчитав величину вурфов по (5.22) последовательно снизу вверх по каждому столбцу, находим, что величина эта своя для каждого результата. И для всех линий варьируется от 1,33355 до 1,3764, т.е. в пределах 3%. Варьирование можно объяснить несколькими способами, но наиболее вероятное объяснение в том, что водородный атом испускает много фотонов, как бы не входящих в эти серии, но их отсутствие изменяет величину вурфа. Кроме того, на “расплывание” вурфа, по-видимому, оказывает влияние и особенности испускания фотонов в различных физических процессах.

Теперь, имея вурф водородных линий, определим, какой коэффициент матрицы 3 образует, с точностью до четвертого знака, аналогичный величины вурф. Величина этого коэффициента равна 1,0192975..., квадрат ее 1,038967... (обратная величина числа 1/1,019...= 0,98107.. выделена в матрице 4). Определим теоретически вурф W спектральных линий:

W(1;1,01929...;1,0389...) = (1+1,019...)(1,019...+1,0389...)/1,019...(1+1,019+1,0389) = 1,33343.

А это означает, что все три серии спектральных линий водорода изменяются пропорционально некоторому коэффициенту k и числу 1,01929... Найдем этот коэффициент, для чего разделим предпоследние числа серий на последние:

k1 = 923,15/920,96 = 1,002378...,  k2 = 1,009874, k3 = 1,02375...

и получаем, что:

k14 = k2;            k110 = k3;               

Следовательно, системы спектральных линий водорода, в пределах принятой точности измерения, кратны k, и можно полагать, что указанные выше серии не охватывают всего разнообразия испускаемых водородом спектральных линий.

Вурф позволяет не только проследить принадлежность некоторого параметра тому или иному процессу, характер его изменения, но и определить, что очень важно для физических исследований, “полноту” ряда показателей, относящихся к нему. Воспользуемся этим обстоятельством и проверим плотностную полноту r п - мерного ряда, полученного в предыдущем разделе. Повторим его: коэффициент трехмерности p3 - 4,18879; четырехмерности p4 - 4,45407; пятимерности p5 - 4,73719; шестимерности p6 - 4,98120; семимерности p7 - 5,18395; восьмимерности p8 - 5,35324. Подставляем эти числа уравнение (3,28) и определяем величину вурфов:

W(345) = 1,332955;     W(456) = 1,33058;

W(567) = 1,34794;       W(678) = 1,33144.

Резкий скачок вурфа W(567) с последующим опусканием показывает, что количественные величины плотностной мерности четвертого и пятого пространств либо пропорциональны иначе, либо в этой области плотности имеется еще одна сфера-граница, либо имеет место плотностное изменение пространства этой области. Во всяком случае, следует искать причину, вызывающую скачок или методы выравнивания плотностных величин вурфов.

Не только отдельные процессы и явления природы описываются в рамках русской матрицы, но и, по-видимому, все научные направления должны использовать эту методологию и в частности физика, изучающая свойства тел, полностью базируются на коэффициентных зависимостях. Оказывается, что все физические свойства тел качественно связаны степенными величинами малой секунды музыкального гармонического ряда 1,05946...[30]. И именно эта качественная взаимосвязь является основой теории размерностей.

Таким образом, русская матрица является математической структурой, отображающей гармонию внутренних взаимосвязей всех свойств тел, материальных процессов или явлений. Система вурфов, в свою очередь, соединяет, казалось бы, случайные, произвольные числа в пропорции, определяющие принадлежность этих чисел к некоторым процессам и коэффициентам русской матрицы.

Поэтому знание класса русской матрицы позволяет, по-видимому, не только отслеживать развитие любого материального процесса или структуры, но и возможности отклонения их от параметров матрицы и корректировать течение этих процессов.

 

3.5. Коэффициенты физической размерности

Системный характер механики Ньютона подтверждается базирующимся на ее постулатах методом физической размерности. Основу метода составляют различные взаимосвязанные свойства тел, количественные и качественные (размерность) обозначения которых и становятся единицами измерений. Свойства в современной классической механике делятся на основные, или фундаментальные, и производные. За основные свойства принимаются: длина (метр), масса (килограмм), время (секунда), градус Кельвина, ампер и свеча. Измерение физической величины сводится к сравнению ее с однородной физической величиной, принятой за эталон. Производные единицы измерения устанавливаются на основании законов и формул, связывающих эти величины с основными. В системе СГС, которая используется в настоящей работе, эти величины измеряются в граммах, сантиметрах и секундах. Описание произвольного физического параметра в единицах измерения основных величин и определяет его размерность. Поэтому в методе размерности:

- размерность произвольного параметра есть произведение степеней основных величин размерностей;

- размерность обеих частей физического уравнения всегда остается одинаковой.

Для получения физических взаимосвязей параметров достаточно выписать с размерностью группу физических величин N, между которыми требуется установить взаимосвязь, обусловленную соотношением K £ N размерностей основных величин, и составить из них безразмерное произведение. Если N - К = 1, будет получено единственное произведение, приравняв которое безразмерной константе, находим закономерные зависимости между исходными параметрами.

Не останавливаясь на рассмотрении способов применения методов размерности, поскольку имеется достаточное количество первоисточников, отмечу, что метод позволяет быстро находить оценочные зависимости между физическими параметрами в различных разделах физики. Однако нет ясности в том, какие закономерности обусловливают существование метода размерности. А потому возникает множество безответных вопросов:

- Какие физические или математические закономерности составляют основы метода размерности?

- Может ли существовать не степенная зависимость в уравнениях физических параметров?

- Как использовать метод, когда К >> N?

- Только ли безразмерная константа может получаться при рассмотрении физических взаимосвязей?

- Какие закономерности обусловливают существование в одной системе фундаментальных постоянных и переменных свойств? И т.д.

Все эти вопросы остаются без ответа только потому, что метод размерности не выводится из классической механики, а только базируется на ней. По сути дела его основы остаются скрытыми.

Количественное описание физических взаимодействий возможно только потому, что все функциональные свойства в совокупности связаны между собой и образуют единую систему - тело. В этой природной системе, как уже говорилось, все свойства имманентны по характеру взаимодействий, подобны, присущи всем телам, равнозначны и не разделяются на фундаментальные и производные. Они абсолютны, являются атрибутами всех тел, качественно взаимосвязаны, количественно изменяемы, но только в определенной пропорции с другими свойствами, при индексном описании всегда имеют размерность и не могут отсутствовать в теле. Ни одно свойство принципиально никогда не может, по своей количественной величине, быть равной 0. Равенство свойства 0 равнозначно отсутствию тела, которому это свойство "принадлежит".

Все бесчисленные свойства, образующие тела, имеют свою количественную величину, выражаемую числом с размерностью. И каждая величина – свойство, отображение отдельного качества, связана качественно и количественно со всеми остальными свойствами тел. Но численные величины свойств каждого тела всегда отличаются от численных величин любого другого тела. Поэтому тождественные тела на всех уровнях в природе отсутствуют. Качественные же взаимосвязи свойств остаются одинаковыми. Именно эти взаимосвязи формализуются в виде физических законов, функций и уравнений, описывающих инвариантные соотношения природных систем.

Поскольку тело есть система взаимосвязанных свойств, а взаимодействие тел осуществляется только посредством свойств, то связь между свойствами может послужить основой для определения качественной зависимости между их параметрами.

И если мы достаточно хорошо умеем находить количественные величины некоторых свойств, частично понимать их взаимодействие и поведение при изменении воздействий на тела, то качественные связи и законы нам понятны далеко не достаточно. Мы даже не знаем, заключают ли в себе качественные связи какие-либо количественные величины. И хотя в физике существует анализ размерностей, призванный способствовать определению функциональных связей посредством сравнения размерностей, он не является универсальным методом, позволяющим автоматически определять зависимости между физическими величинами. Более того, его применение требует учета размерных постоянных, выбора подходящей системы единиц, зачастую интуитивного нахождения различных дополнительных предположений. А главное - остается неизвестным, какие же закономерности предопределяют качественные взаимосвязи свойств.

Если исходить из предположения, что может существовать система числовых коэффициентов, обусловливающая качественную взаимосвязь свойств, то достаточно  найти хотя бы один из них, чтобы, ориентируясь на него, постараться выявить всю систему.

Поскольку наличествует всеобщая взаимосвязь свойств каждого тела, то всякое изменение любого его параметра должно вызывать пропорциональное линейное или нелинейное изменение всех остальных его свойств. Какова количественная величина этой пропорциональности, неизвестно, но хотя бы один параметр изменения мы можем выявить, например, посредством соединения вместе двух одинаковых твердых тел. Опишем такую операцию.

Возьмем для примера два глиняных шара радиусом r, слепим из них один шар радиусом R. Можно полагать, что с возрастанием величины одного параметра − объема шара произойдет пропорциональное (линейное или нелинейное) количественное изменение и остальных свойств нового шара. Наиболее заметную величину при этом имеет изменение радиуса от r до R.

Зная соотношение объемов V и V1 шаров, определим коэффициент изменения радиуса:

43p R3 = 2×4/3p r3.

Сокращая одинаковые члены левой и правой части уравнения, получаем:

R3 = 2r3 ,

откуда находим коэффициент изменения радиуса:

R = r 3Ö2 = 1,259921... r.

Число 1,259921 ранее уже встречалось как коэффициент объемной связности. Здесь оно определяет количественное изменение радиуса r при возрастании объема шара в 2 раза, и, по-видимому, отображает качественную зависимость между параметром объема и радиуса. Если считать, что коэффициент k = 1,2599 ... - количественная величина качественной характеристики радиуса - связность, определяющая его участие во взаимосвязях с другими свойствами тела, то можно предположить, что и остальные свойства тел обладают такими коэффициентами, и, зная k, попытаться по известным уравнениям определить их величину и для других свойств.

Наличие одного коэффициента связности, для которого подходит также название значимости свойства, требует такого подбора уравнений, в которых задействовано минимальное количество параметров, входит параметр R, а новые параметры добавляются, с прибавлением уравнений. Лучше всего отвечают этим условиям инвариантные уравнения. В этих уравнениях все параметры связаны так, что изменение одного из них вызывает пропорциональное изменение другого (других) таким образом, что количественная величина произведения остается const. Подходит, например, кеплеровская система инвариантов и планковский инвариант:

R v2 = const,                                               (5.23)

R2g = const,                                               (5.24)

R3 / t2 = const,                                              (5.25)

m v R = const ¢ ,                                      (5.26)

где v − скорость (например, орбитальная); g − напряженность гравитационного поля (ускорение свободного падения); t – время, m − масса.

Инвариантность уравнений (5.23) − (5.26) не изменится, если их правую часть приравнять базисной 1, (const = 1). Тогда, зная k, можно определить модуль значимости остальных параметров. Значимость – количественная характеристика размерности определенного свойства. Будем обозначать значимость звездочкой справа вверху индекса параметра. Например, числовая значимость свойства расстояния R* = 1,259921 – безразмерностная величина.

Из уравнения (5.23) находим величину значимости v*;

R* v *2 = 1,

v * = 1/ √ R* = 1/1,12246 = 0,890898... .

Находим по (5.24) значимость напряженности g*;

R*2g = 1,

g* = 1/R*2 = 1/1,5874... = 0,62996... .

Из инварианта (35.25) определяем величину значимости времени t*;

R*3/t*2 = 1,

t* = √ R*3 = 1,41421.

А по инварианту (5.26) выявляем значимость массы m*:

m* v *R* = 1,

m* = 1/ v *R* = 1/1,12246 = 0,890898... .

Последующие значимости получим, используя многие отработанные уравнения различных разделов физики. Для получения значимости силы F*, «постоянной» тяготения G*, энергии W* используем формулы:

F* = m*g*,

m*G* = const,

W* = m*l* v *.

Подставляя в них найденные ранее значимости свойств, находим их для времени t* = 1,41421... , силы F* = 0,56123... , «постоянной» тяготения G* = 1,12246 ..., энергии W* = 0,707106... Этим же методом можно получить значимости всех известных на сегодня физических параметров и тем самым обеспечить численное обоснование качественных взаимосвязей функциональных свойств. Численные величины качественных взаимосвязей названы коэффициентами физической размерности (КФР).

Поскольку каждое физическое уравнение в статике описывает некоторую качественную зависимость входящих в нее параметров, то по своей структуре оно является инвариантом. Так, уравнение гравитационного притяжения тел:

F = GMm/R2,                                              (5.27)

может быть следующим образом записано в инвариантной форме:

GMm/FR = 1.                                             (5.28)

Итак, мы снова вышли на систему инвариантов с базисной единицей, которая впервые появилась в статико-динамической геометрии (4.8)–(4.17). Появление инвариантов с базисной единицей в физике, аналогичных инвариантам упомянутой геометрии, еще раз свидетельствует о наличии в ее элементах физических качеств, и следовательно, об аналогии проективного пропорционирования гармонической четверки точек пропорциональной взаимосвязи физических параметров. И уравнения (4.8)–(4.17) по своей структуре инвариантны, т.е. изменение количественной величины одного из составляющих его членов вызывает автоматическое и пропорциональное изменение другого (других) членов уравнения. Но если в статико-динамической геометрии пропорционирование элементов геометрической взаимосвязи носит случайный характер, т.е. определяется положением точки опоры, то пропорционирование значимостей свойств полностью определяется числовыми величинами коэффициентов физической размерности. Золотые величины коэффициентов свойств, становятся качественными значимостями каждого свойства и определяют его инвариантные взаимосвязи со всеми остальными свойствами тела. Они, количественные коэффициенты качественных значимостей свойств, являются едиными для всех материальных тел. Но количественная величина каждого свойства каждого тела всегда отличается от аналогичной величины любого другого тела. По количественной величине своих свойств тела просто несопоставимы, поскольку они есть самости несоизмеримые, и в каждой области пространства имеют различную количественную величину при постоянной и неизменной качественной значимости.


Дата добавления: 2021-02-10; просмотров: 77; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!