Краткий анализ основ геометрий 38 страница



Таким образом, введение неравенства (3.10) не приводит к получению четырехмерного пространства, а только изменяет форму вычисления точек в евклидовом трехмерном пространстве. Да и не может изотропное пространство, по определению, иметь измерений больше трех, поскольку увеличение мерности автоматически предполагает появление нового качества и, следовательно, нарушение изотропности хотя бы в одной точке пространства. По евклидовой геометрии это просто не допустимо. Но динамическая псевдоевклидова геометрия, квантованная индивидуальными точками, и отображает анизотропное пространство.

Приведем некоторые соображения, связанные с золотыми пропорциями:

По-видимому, множество золотых сечений - пропорция иррациональных чисел, разделяющих объемные параметры фигур соответственно изменению пространственной мерности. Они отражают природную соразмерность соответствующих структур, взаимосвязей и взаимодействий реального мира. Они отображают гармоническую последовательность деформации материи при образовании кристаллических структур и структурирование тканей при росте и развитии живых организмов. Конструкции, нарушающие золотые пропорции, не совместимы с природными процессами, вносят возмущение в их течение, а потому обладают предрасположением к ускоренному разрушению.

Абстрактная единица в золотом многообразии отсутствует. Но ее условный символ - базис, - воспринимается нами как абстракция. Ряд иррациональных многомерностей бесконечен и внутрь и наружу. Он охватывает иррациональную Вселенную, но, по-видимому, не затрагивает рациональный мир (мир рациональных чисел), причем, похоже, иррациональными являются и простые числа, и их произведения. Важно не то, сколько чисел составляют золотой ряд, а какова их темперация, такт и лад.

Числа золотого многообразия - безразмерностные коэффициенты, отображающие пространственное изменение качества. Они «работают», по-видимому, только тогда, когда имеется «эталонный» модуль - первое от базисной 1 число, определяющий процесс восхождения или нисхождения ряда. Модуль - как бы является коэффициентом «приращения» мерности пространства, ее родственности этому пространству. Числа золотого сечения - «стержни» этого движения, придающие стабильность происходящим процессам.

Условная базисная единица символизирует постоянный переход, постоянное движение пространства в своей окрестности, и поэтому она никогда не может быть абстрактной. Представление ее как абстракции переводит математику иррациональную – динамическую в математику рациональную – статическую. Именно на абстрактной единице построена вся современная математика, которая поэтому не может адекватно описывать природные процессы.

Отбросив условности и превратив единицу в абстракцию, люди тем самым отбросили незаконченные переходные процессы, которые относятся как к развитию человека, так и к развитию любой области природы.

Отбросив переходные процессы, человечество ввергло себя в хаос технократии, включило механизм регрессивного движения к изначальному состоянию (буквально - в пещеры), к состоянию, определяемому выражением «конец света».

Существование чисел золотого многообразия, их связь с параметром p , а следовательно, со строением реального мира, обусловливает иное понимание структуры окружающего пространства и его мерности. Об этом же свидетельствует и структура квантованной динамической геометрии, базирующейся на золотых пропорциях и анизотропность окружающего пространства.

Три координаты евклидова пространства, проходящие через О, есть «свернутая» аналогия деления объема плоскостями. Они «закрывают» евклидову ортогональность, закрывают одно качественное состояние «равноуплотненного» пространства. Наращивание координат - наращивание количества плоскостей - не изменяет пространственной плотности и не открывает новой мерности, поскольку оставляет ей квадратичную (плоскостную) структуру. Только изменение представления об объемности и координатности (количество координат в уравнении равно их степени) изменяет понимание о пространстве как о длине в разных направлениях, на представление плотности пространства как перехода к новому качественному состоянию, как отображение условий существования реального пространства. Некоторое возможности такого наращивания, и построения n-мерного пространства рассматривается в следующем разделе.

 

5.3. Введение в плотностную r n-мерность

Пространственное расположение фигур и расстояния между ними описываются в современной геометрии в основном методами координат, и в частности декартовых. Три взаимно ортогональные координатные оси обусловливают возможность привязки к их пересечению всех точек пространства. Метод базируется на постулировании независимости и равнозначности каждой координатной оси, а их общее количество как бы отображает трехмерность реального пространства. И остается под вопросом возможность существования большего количества мерностей. Однако, как уже упоминалось, это не мешает математикам оперировать с любым количеством мерностей. Основа этих п-мерных операций заложена в постулате Римана о многократно протяженных величинах. Им, вслед за Декартом, постулируется, что все координатные оси равнозначны и каждое сверхтрехмерное измерение является самостоятельной мерностью, не связанной ни со свойствами пространства, ни со свойствами тел.

Но природа едина, свойства ее взаимосвязаны, она не излишествует свойствами, обладающими «свободной волей», и поэтому надо искать в отображениях ее образований подсказку того, как и в чем проявляет себя пространственная n-мерность. За геометрической подсказкой снова обратимся к евклидовой геометрии.

Одной из наиболее известных теорем этой геометрии, как неоднократно подчеркивалось, является теорема Пифагора. В ней утверждается, что:

«Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов его катетов».

Это знали еще древние египтяне, а священный прямоугольный треугольник со сторонами численно равными 3, 4 и 5, служил основой построения прямого угла на плоскости и носит название священного египетского треугольника.

Теорема проста, и ее изучение в школе сопровождается иллюстративным доказательством справедливости посредством построения на каждой стороне треугольника квадрата. Если же площади квадратов сложить, то они оказываются равными площади квадрата гипотенузы:

a2 + b2 = c2.                                                     (5.8)

В аналитической геометрии уравнение (5.8), путем деления левой части на правую часть, превращается в уравнение окружности на плоскости:

a2/c2 + b2/c2 = 1.                                  (5.9)

Особенность уравнения (5.8) в том, что подстановка в его левую часть вместо индексов а и b квадратов последовательности чисел а = 3 и b = 4 приводит к получению квадрата следующего числа натурального ряда с = 5. Существует еще одно аналогичное (5.8) суммирование, но уже не квадратов сторон, аих кубов:

a3 + b3 + c3 = d3.                                (5.10)

И в этом уравнении сумма кубов, построенных на длинах последовательного числового ряда египетского треугольника а = 3; b = 4; с = 5, равна кубу длины следующего числа ряда - 6. Поскольку кубы образуются на базе метрического числового ряда, то сумма их, равная кубу последующего числа, смотрится как некоторая случайность. Но два уравнения, подчиняющиеся одинаковой последовательности (5.9) и (5.10), образоваться случайно уже не могут. Они - следствие непознанной закономерности.

Логика геометрических построений подсказывает, что на этом ряд степенного суммирования не заканчивается и следует ожидать его продолжения добавлением к уравнению (5.10) очередной цифры числового ряда, а к показателю степени - очередной единицы.

a4 + b4 + c4 + d4 = e4                          (5.11)

Но, увы, левая сумма неравенства (5.11) не равна четвертой степени очередного числа. И на этом степенная последовательность уравнений как бы прерывается. Однако остается вопрос: почему она прерывается? Вопрос важен и потому, что со временем уравнение (5.8) стало геометрическим аналогом двумерного пространства, а подобное ему по структуре уравнение (5.10) аналогом трехмерного пространства. И не может ли неравенство (5.11) оказаться некоторым аналогом пространства четырехмерного?

Рассмотрим этот проблематичный ряд несколько с иной позиции. Уравнение (5.9) подсказывает, что в египетском треугольнике может быть зашифрована не сумма квадратов катетов, а сумма площадей некоторых окружностей, имеющих радиусом модуль чисел египетского треугольника. И это достаточно просто показать, превратив уравнение (5.8) из суммы площадей квадратов в сумму площадей окружностей, добавив в качестве сомножителя каждого члена p:

p a2 + p b2 = p c2                                   (5.12)

Становится ясным то, что сумма квадратов площадей (5.8) была получена так же, как и третий закон Кеплера, посредством сокращения всех членов уравнения (5.12) на общий для них коэффициент p. Результатом сокращения стало изменение смыслового значения самого уравнения. Иррациональная площадь одних фигур - кругов оказалась подменена рациональными площадями других фигур - прямоугольных треугольников. (Очередной пример изменения качественной значимости уравнения при сокращении всех его членов на иррациональный коэффициент.)

Однако в (5.12) p не коэффициент пропорциональности радиуса и окружности. p - это их соизмеримость. И в (5.12) складываются не площади. Сложение плоскостей и объемов r п - мерностей есть сложение иррациональных степенных отображений свойств. Есть соизмерение несоизмеримого. Соизмеримость новое качество, элемент бесконечности и поэтому складываются степенные образования, а сложение оказывается элементом неопределенности. И поэтому сокращение на p в принципе невозможно ни в одной математической операции, поскольку сопровождается качественным изменением смысла уравнения, неявным превращением иррационального в рациональное.Отсюда следует, чтоуравнение (5.8) качественно отличается от уравнения (5.12).Например, иррациональная неопределенность отсутствует у площадей многоугольников и их можно складывать в любых операциях. Сложение таких площадей не сопровождается появлением иррациональностей (конечно, если стороны многоугольников не иррациональны). При сложении площадей кругов или объемов шаров наличие иррациональности неизбежно как следствие иррационального качества соизмеримостей.

Из (5.12) следует, что в действительности складываются площади, но не треугольников, а двумерных окружностей. И сумма двух площадей, образуемых радиусами числовой последовательности 3, 4, составляет площадь окружности с радиусом 5. Если считать, что стороны египетского треугольника являются радиусами некоторых окружностей, то на их базе можно построить три взаимно пересекающиеся окружности. Нарис.74 приведен один из вариантов такого построения. Взаимное расположение окружностей по координатным осям как бы показывает, что метричность двумерного пространства не меняется при любом положении окружностей в нем. Эту неизменность и демонстрирует равенство суммы площадей двух меньших окружностей - большей. Именно этот результат заставляет предположить, что формула (5.10) описывает аналогичное сложение объемов.

Переходя теперь к уравнению (5.10), следует отметить, что и его достаточно просто можно превратить в сумму, но уже не площадей окружностей, а объемов сфер-шаров на базе радиусов того же последовательного ряда чисел умножением каждого члена уравнения на коэффициент 4/3p:

4/3p a3 + 4/3p b3 + 4/3p c3 = 4/3p d3.                            (5.13)

И здесь, аналогичным сокращением на 4∕3p из шаров численно неопределенного объема были получены численно определенные кубы (5.10), которые окончательно скрыли зависимость количественной величины p от мерности, а, следовательно, и плотности получаемой геометрической фигуры. Уравнение (5.13), хотя и аналогично уравнению (5.10) по структуре и как бы следует из него, являет совершенно иной физический смысл. Оно показывает, что в трехмерном пространстве три радиуса любой области одной как бы рациональной числовой последовательности а, b, с, образуют сферы-шары, суммарный объем которых равен объему четвертой сферы - шару с радиусом d из той же числовой последовательности.

Таким образом, последовательность уравнений (5.12) и (5.13) демонстрирует некоторую однородность и изотропность двумерной и трехмерной части пространства. И эта однородность прерывается на неравенстве (5.11) либо потому, что мир трехмерен, либо потому, что переход в более высокие измерения сопровождается изменением плотностной метричности пространства, а, следовательно, и изменением численной величины коэффициента p . В этом случае уравнение числовой последовательности (5.13) запишется следующим образом:

4/3p a4 + 4/3p b4 + 4/3p c4 + 4/3p d4 = 4/3p e e4. (5.14)

Если считать, что каждое слагаемое имеет собственное числовое значение, соответствующее п-мерности, то логика последовательности может быть показана построением пространственного мерного ряда уравнений (Таблица 6).

Предположим, что:

а - индекс какого-то числа натурального ряда или абстрактное числовое обозначение длины, не связанной с плотностной мерностью;

а1 - длина одномерного луча;

an, bn, cn, l,…, kn - длины лучей, у которых показатель степени

соответствует мерности пространства.

Таблица 6

Мерность пространства Уравнения  
Безмерностное a  
Одномерное a1 = b1  
Двумерное a2 + b2 = c2  
Трехмерное a3 + b3 + c3 = d3 (5.15)
Четырехмерное a4 + b4 + c4 + d4 = e4  
Пятимерное a5 + b5 + c5 + d5 + e5 =f5  
... ... ... ... ...  ... ... ... ... ... ... ... ...  
n  - мерное an + bn + cn + ... + kn = ln  

 

Этот ряд:

- логически последователен;

- свидетельствует о том, что пространство многомерно, а количество членов левой части уравнений, и числовое значение степени при них соответствует номеру мерности;

- показывает, что координатные оси не равнозначны. Каждая ось многомерного пространства связана со всеми остальными;

- что существуют ортогональные и не ортогональные координатные оси;

- двух -  и трехмерная ортогональность обусловливает через p некоторую стабильность метричности, которая следует из уравнений (5.12) и (5.13);

- n - мерность пространства, похоже, характеризуется возрастанием пространственной плотности.

Отметим еще раз, что левая часть уравнений (5.15), - суммируемое количество степенных осей-лучей, как и показатель степени при них, соответствует мерности рассматриваемого пространства, и потому переход от кубичности длин к п-мерности суммируемых сфер-шаров происходит умножением трехмерных длин на коэффициент 43p2, а всех последующих на 4/3p n-2. И в модифицированных уравнениях сумма мерных величин будет приводиться к следующему виду:

4/3p an + 4/3p bn + 4/3p cn +...+ 4/3p kn = 4/3p n-2 ln.             (5.16)

Из уравнения (5.16) следует, что его левая часть есть определенная числовая последовательность объемного, для данной мерности, типа. И, в первом приближении, констатируется, что коэффициенты 4/3 и p остаются неизменными в трех мерностях. А каждый прибавленный член последующей мерности находится из решения предыдущего уравнения. Он-то и определяет степень плотностной деформации пространства в данной мерности и в систему суммирования левой части входит в недеформированном виде как натуральный член числового ряда.

Однако в современной геометрии не деформируемое p постулируется неизменным коэффициентом, который количественно равен числу 3,14159.... и остается, как полагают, неизменным не только в трехмерном евклидовом пространстве и при описании плоскостей этого пространства, но и при описании объемных пространственных мерностей.

Думается, что здесь мы имеем дело с другими факторами. Обратим внимание на то, что одномерное пространство - линия - не имеет никакого пространственного коэффициента. Это и понятно - она ничего не образует и потому для нее p1 = 1, и потому, не обнаруживается в уравнениях. Но вот круг - плоская фигура, качественно отличающаяся от линии, и образование круга на плоскости сопровождается появлением трансцендентного коэффициента p2 = 3,14159.... единого для окружностей любых недеформированных плоскостей.

Переход от плоскости к пространству сопровождается новым изменением коэффициента связанного с окружностью. Безразмерностный трансцендентный коэффициент p2 умножается на такой же безразмерностный, но уже иррациональный коэффициент 4/3 = 1,333333... и в этой связке употребляется во всех расчетах. Но правильно ли такое понимание объемности? Не имеем ли мы дело с другим безразмерностным, трансцендентным, объемным коэффициентом равным 4 / 3 p 2 = p 3 = 4,18879.... . И не свидетельствует ли этот трансцендентный коэффициент 4,18879... о том, что существует определенное изменение качества при переходе от плоскостных фигур к объемным фигурам. То есть каждое изменение численной величины пространственной мерности сопровождается изменением пространственного коэффициента p . К тому же образующиеся в точечных местах координатные оси не равнозначны (метрически), скорее они отражают изменение плотности пространства r , а не возникновение новых координатных осей (мерностей) [35]. Отметив такую возможность, проведем расчеты по выявлению плотностной мерности пространства учитывая, что степень деформации определяется числом p п-2 и индивидуальна для каждого p при п > 2.


Дата добавления: 2021-02-10; просмотров: 81; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!