Краткий анализ основ геометрий 37 страница



0,191 + 0,809 = 1.

Используем метод двойного хода “шахматного коня”: с поля 0,236 “переступаем” через число 0,472, а от числа 0,944 движемся направо к 0,764 и складываем его с первым:

0,236 + 0,764 = 1.

“Шаги” через числа могут быть и более длинными. Например, возьмем число 0,056 на главной диагонали. Через пять чисел вверх на числе 1,783 повернем вправо и через два числа найдем 0,944. Сложим их, сделав один шаг наверх и два вправо, находим 1:

0,056 + 0,944 = 1.

Или, по тем же правилам, от числа 0,118 пройдем к числу 2 и, сделав ход вверх и два вправо, имеем:

0,118 + 2 = 2,118.

Или по главной диагонали:

0,0213 + 0,0344 + 0,0902 + 0,236 + 0,618 = 1.

Количество слагаемых может возрастать. Например, суммируя от 0,146 по главной диагонали, двигаясь через число 0,382, к 1 и от него, тоже через число влево, можно получить результат 1,528:

0,146 + 0,382 + 1 = 1,528,

оставаться последовательным:

0,146 + 0,382 + 0,472 = 1,

становиться фрактальным:

0,1803 + 0,236 + 0,5836 = 1,

или образовывать различные комбинации из них:

0,08514 + 0,1114 + 0,146 + 0,2755 + 0,382 = 1 и т.д.

Количество примеров, и не только сложения, но и всех действий арифметики, можно множить и множить. Правила их использования относятся ко всем числам поля и в совокупности со степенными числовыми рядами образуют матричную «вязь», охватывающую все числовое поле как матрицы 3, так и матрицы 4. Матричная вязь есть следствие отдельности каждого элемента числового поля, и отображает принадлежность его к числовому полю как к целому. Именно матричная «вязь» обеспечивает корректность операций между золотыми числами полей этих матриц.

Русскую матрицу можно образовать, заполнив ее не иррациональными числами, а их отображениями в угловых единицах (в градусах). В такой матрице 5 необычная система углов представляет, по-видимому, некую величину поворота относительно базисной единицы. Хотя не исключена иная, еще не выявленная взаимосвязь. Немаловажно так же и то, что в матрице 5 наряду со значениями целых и дробных углов, например, 30о, 60о, 72о, проявляется число p с точностью как минимум до десятого знака (как cos 72o). И можно показать, что между золотым числом и коэффициентом p имеется взаимосвязь, отображаемая формулой:

1/Ф = (1 - Ö5)/2 = 2 cos72о = 1∕2 sin(90о − 36о)

Матрица 5

15,11 12,22 9,888 8,00 6,472 5,236 4,236
7,554 6,114 4,944 4,00 3,236 2,618 2,118
3,777 3,058 2,472 2.00 1,618    
      90о 0 ¢ 36о 0 ¢ 49о 58о
19о 16¢ 40о 11¢ 51о 50 ¢ 60о 0 ¢ 66о 10¢ 70о 55¢ 74о 41,5¢
61о 50¢ 67о 32,5 ¢ 72о 0 ¢ 75о 31¢ 78о 24¢ 80о 37¢ 82о 25¢
76о 21 ¢ 78о 59¢ 81о 8,5¢ 82о 49¢ 84о 12¢ 85о 18¢ 86о 13¢

Приведем еще один вариант матрицы, связанный как с древнерусскими саженями, так и с размерностью физических уравнений. Начнем с саженей. Оказалось, что длины древних саженей были извлечены из числового поля матрицы, в которой число, задающее шаг базисного столбца, является малой темперированной секундой музыкального ряда, равной 1,05945... и получается извлечением корня двенадцатой степени из 2, главная диагональ кратна Ф, а сама матрица имеет гармоническую структуру, относящуюся не только к музыке, но и самым непосредственным образом к физике. Числа базисного ряда гармонической матрицы 6 являются качественными коэффициентами физической размерности (КФР) свойств тел, составляя основу теории размерности. КФР позволяет принципиально по-иному подходить к этой теории и к формализации физических уравнений (ниже метод КФР будет разобран подробнее). Приведем фрагмент матрицы 6.

Следует отметить, что корень двенадцатой степени из 2 появился не случайно. Он следствие перенесения на базисный столбец рациональных чисел отображающих деление динамического отрезка на 12 физически одинаковых частей. То есть здесь имеет место почисловое отражение русского ряда на вертикальный базисный ряд матрицы.

В матрице 6 древнерусские сажени располагаются, начиная с 350-й строки, под базисной 1 и заканчиваются 418 строкой. А по столбцам начиная с 60-й и заканчивая 70 столбцом [23]. Отмечу, что величина саженей подобрана таким образом, что получается ступенчатая последовательность расположения значащих чисел (их длин с точностью до четвертого знака), которая обеспечивает, посредством 12 последовательных умножений на 1,05946, удвоение каждого числа. Это очень удивительная структура, определяющая некую «иерархически соподчиненную» взаимосвязь чисел матрицы

6. В ней величина длин саженей оказывалась «выше» по значимости, чем расположенные под ними 10 «промежуточных» чисел. Эти промежуточные числа в столбцах можно «убрать», проведя операцию «свертывания» промежуточных чисел и подтягивания в одну строку оставшихся значащих чисел. Последнее не меняя структуру матрицы, увеличивает шаг базисного столбца и изменяет ее числовое поле, а, следовательно, и ранг чисел, переводя их из «соподчиненных» в смежные, убирая физическую гармонику базисного ряда, а с ним «укрывая» и качественную обусловленность взаимосвязи всех физических свойств.

 

 

Матрица 6

0,1670 0,2550 0,3895 0,5949 0,9085 1,387 2,119 3,236 4,942
0,1576 0,2407 0,3676 0,5615 0,8575 1,309 2,000 3,054 4,665
0,1488 0,2272 0,3470 0,5300 0,8094 1,236 1,888 2,883 4,403
0,1404 0,2146 0,3275 0,5002 0,7639 1,167 1,782 2,721 4,156
0,1325 0,2024 0,3091 0,4721 0,7211 1,101 1,682 2,568 3,923
0,1251 0,1911 0,2918 0,4456 0,6806 1,039 1,587 2,424 3,703
0,1181 0,1804 0,2754 0,4296 0,6324 0,981 1,498 2,288 3,496
0,1114 0,1702 0,2599 0,3970 0,6063 0,926 1,414 2,160 3,296
0,1052 0,1607 0,2464 0,3747 0,5723 0,874 1,335 2,039 3,113
0,0993 0,1516 0,2316 0,3537 0,5402 0,825 1,260 1,924 2,939
0,0937 0,1431 0,2186 0,3339 0,5099 0,779 1,189 1,816 2,774
0,0885 0,1361 0,2063 0,3151 0,4812 0,736 1,122 1,714 2,618
0,0835 0,1275 0,1948 0,2974 0,4542 0,694 1,059 1,618 2,471
0,0788 0,1204 0,1838 0,2807 0,4282 0,655 1,000 1,527 2,332
0,0744 0,1136 0,1735 0,2650 0,4047 0,618 0,944 1,441 2,201

Выбор размеров древнерусских саженей оказался далеко не случайным, хотя таким он кажется на первый взгляд. Если, начиная с 1 сосчитать количество строк - 351 до численного размера наименьшей из саженей – 1,345 м. и, возвести основание 1,05946... в степень 351, то получим, с точностью до 0,1% модуль радиуса земного шара – 6384,5 км. Более точное целое число получается, если разделить радиус Земли, равный 6378 км, на длину царской сажени 1,974 м или на ту же меньшую сажень 1,345 м. Результат поразителен для чисел из четырех значащих цифр. Получаем целые до шестого знака числа: 323100 в первом случае и 474200. Эта интересная «случайность» обусловливает объектам, возводимым по древней методике получение объемов сооружений, квантованных пропорционально структуре Земли (подробнее [23]).

И, наконец, еще одна важная для понимания естественной структуры реального пространства особенность формы русской матрицы. Из всех клеток-ячеек матрицы уберем числа, оставив только базисную 1, проведем нумерацию их, начиная с этой 1, и поставим в верхнюю клетку цифру 2. Далее двигаясь по часовой стрелке, получим удивительную и странную полуматрицу (матрица 7), сводящую динамическую геометрию с геометрией золотых пропорций и отображающую их квантованное единство.

Рассмотрим фрагмент этой полуматрицы из 121-й клетки-ячейки.

Матрица 7.

Образующаяся полуматрица интересна сама по себе и заслуживает отдельного исследования. Таблица названа полуматрицей, поскольку в нее входят и взаимосвязанные и степенные числа, изменяющиеся на одну и ту же величину.

Всеобщая связь между каждым числом, похоже, отсутствует. Например, все клетки базисного «креста» горизонтального и вертикального слоев заполнены четными числами, что свидетельствует о качественном отличии базисной 1 от других чисел матрицы. Но главное достоинство полуматрицы в том, что на ее примере можно наглядно демонстрировать образование лучей-спиц, но не снаружи внутри, как на рис. 33, а изнутри наружу. Иначе говоря, структура этих двух моделей аналогична. И аналогия эта, во-первых, подтверждает единство геометрий, а во-вторых, позволяет проследить процесс образования ячеистой системы лучеиспускания на плоскости. Процесс сохраняется и при построении объемной ячеистой структуры (в ней клетки превращаются в кубики-ячейки).

Итак, первые четыре луча 2-90; 4-100; 6-110; 8-120 исходят от границ базисной ячейки и образуют крест. В своем движении наружу они «засвечивают» все встречающиеся ячейки. Следующие четыре луча (9-85; 3-95; 5-105; 7-115) исходящие из центров нечетных ячеек, «засвечивают» все диагональные ячейки, образуя диагональный крест. Далее количество ячеек удваивается, и лучи испускают ячейки 11, 13, 15, 17, 19, 21, 23, 25. Эти ячейки с нечетной нумерацией по очертанию начинают приближаться к окружности, образуя фигуру наподобие кольца (сферы в объеме). Испускаемые ими лучи двигаются наружу как бы от центра базиса «засвечивая» ячейки через одну. Лучи исходят из смежных, относительно центральной единицы, ячеек в противоположных направлениях. Например, луч из ячейки 11, пропуская одно кольцо ячеек, «засвечивает» 54, далее 129 и т.д. Противоположный луч из ячейки 19 через ячейку 70, 153 и т.д.

При переходе от плоской матрицы к объемной, эффект сферы лучеиспускания усиливается и с каждым новым слоем ячеек объем сферы возрастает, а плотность исходящих лучей превращается в некоторый аналог «ежика» следов, входящих в сферу как на рис. 33.

Уже говорилось,что символом непроявленного «движения» чисел в ячейках может считаться образование числового поля в матрицах неопределенными числами. Неопределенными потому, что их точное цифровое значение неизвестно. Невычисляемо, а следовательно, и непостоянно, подвижно, причем самоподвижно.

Теперь, имея представление о русских матрицах и опираясь на их числовые поля, попробуем рассмотреть возможность построения квантованной физической геометрии на основе числовых полей матриц 2 и 4 и той пространственной зависимости, которая скрывается за ними.

Еще раз вернемся к уравнению (3.12) и отметим странное заблуждение, чуть ли не эйфорию, охватившую ученых после введения Минковским времени и скорости света в уравнение системы взаимнопересекающихся плоскостей евклидовой геометрии. Получившемуся квадратичному уравнению

0 = c2 t2 − x2 − y2 − z2,                               (5.6)

качественно не изменившему евклидовости пространства, поскольку в квадратичном уравнении Евклида один размерный индекс был заменен на другой и только, Минковский, без каких либо оснований, приписал ранг четвертого измерения. То есть нового качественного состояния - четырехмерной объемности, а, следовательно, и неевклидовости.

И, как это ни удивительно, но сначала физики, а затем и математики поверили в «четырехмерность» полученного квадратичного уравнения и, более того, стали получать аналогичные «пятимерные» (Калуца), «шестимерные»..., «одинадцатимерные»..., «двадцатипяти...» [33] и т.д. мерные квадратичные уравнения. Как то забылось, что х2 - есть плоскость (не объем), разделяющая (а не образующая) пространство на две части, а координата х - след-линия пересечения этой плоскости с другой ортогональной ей, у2 - тоже плоскость, но в ином ортогональном направлении. И, наконец, z2 - такая же плоскость, ортогональная двум другим. И объем не образуется этими тремя взаимнонезависимыми, не связанными между собой плоскостями, а заключается между ними. И в этом объеме с2t2 - еще одна плоскость, проходящая ортогонально одной из них в стык двух других.

Введение в уравнение (3.9) неравенства и дополнительной координаты s не меняет качества уравнения, поскольку s2 - тоже плоскость неопределенной ортогональности. или искривленная линия, если считать, что (5.6) аналог (3.12) С появлением этой индексации в евклидовой геометрии не изменилось ничего, кроме названия. Модель решения уравнения (3.12) получена Ф. Канаревым [34] и показана на рисунке 47, на котором путь от О к М отмечен и по уравнению (3.11) и по уравнению (5.6). Разница понятна и без пояснения.

Что касается с2×t2, то его появление в уравнении (3.12) нарушило пространственную соразмерность параметров х, у, z и потому превратило однозначность решения уравнения Пифагора в многозначность даже без учета того, что время как естественная категория в природе отсутствует [2], к тому же плотность евклидова пространства изотропна, а матричного пространства - анизотропна. Именно «выпрямляя» анизотропность, искривляют пространство члены уравнения (3.12) в «знаменитой» теории ОТО. И из решения уравнения (3.12) могут быть получены как корректные (случайно), так и полностью некорректные (регулярно) результаты.

Но элементы псевдо-евклидовой геометрии русского ряда золотой пропорции (3.9) совер- шенно иначе «реагируют» на введение других членов. Они не могут содержать «лишних» членов и форма неравенства (3.10¢) для них невозможна. Неравенство предполагает расширение количества членов, а ряд такого расширения не допускает. Поэтому неравенство (3.10¢) «выводит» взаимосвязи между членами (3.10) за рамки отдельного ряда в плоскость матрицы, когда уо оказывается не равной z: уо ¹ z, допуская введение в (3.10) новых членов, первым из которых и становится s2.

Таким образом, заменив равенство в (3.10) на неравенство и введя равноправный член s2 в уравнение (3.12), математики не в евклидовой, а в квантованной геометрии произвели не одно действие, а два (так же как и при делении в крайнем и среднем отношении). Превратили «самостоятельный» ряд в диагональ матрицы 1 переведя русский ряд в плоскость матрицы. Качественно изменив, таким образом, форму связи членов уравнения (3.9) с линейной, между членами одного ряда, на плоскостную − между числами поля всей матрицы, но не изменив квантованного характера их зависимости.

Построим, базируясь на поле матрицы 3, численное квантованное уравнение типа (3.11). Для этого, методом матричной «вязи» найдем такую комбинацию чисел, которая соответствовала бы равенству n2 = 12 − s2. Естественно, что число 1, в данном случае, не является базисным:

0,618 = 1,618 - 0,472 - 0,382 - 0,146. (5.7)

Если числа уравнения (3.14) записать в степенной форме, то оно станет некоторым подобием уравнения (3.12):

(0,786) 2 = (1,272) 2 - (0,687) 2 - (0,618) 2 - (0,382)2.

В индексах уравнения (5.7) и (3.12) - полные аналоги и представляют собой трехмерное пространство, поделенное плоскостями. Но уравнение (3.12) отображает непрерывное, изотропное евклидово пространство, рассеченное плоскостями и не имеющее выделенных точек, а (5.7) отображает квантованное пространство, состоящее из выделенных точек, - анизотропное пространство, точки которого хотя и связаны с другими точками своими свойствами, но индивидуальны по количественной величине этих свойств. Наличие с2t2 в уравнении (3.12) не изменяет качества статического, изотропного евклидова пространства.

- Из (3.9) и (5.7) следует, что оба уравнения отображают строго определенные точки числовой матрицы, но (3.9) - линейное построение точек, а (5.7) - пространственное.

- И в том и в другом случае имеет место принадлежность как минимум трех числовых точек х, у, z линейной структуре, что позволяет видеть за ними трехчастное членение числового поля матрицы  у.

- Переход от линейного уравнения (3.9) к плоскостному (5.7), сопровождается качественным скачком, и можно ожидать аналогичного скачка и при переходе от плоскостного к объемному.

- Переход от статической к квантованной динамической геометрии характеризуется появлением в математической формализации категории качества, что еще раз свидетельствует о принадлежности динамической геометрии к физике.

Уравнение (5.7) характерно для динамического пространства изменяемой метричности, т.е. по смыслу противоположного евклидову и потому за ним можно сохранить название псевдоевклидово пространство.


Дата добавления: 2021-02-10; просмотров: 66; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!