Краткий анализ основ геометрий 44 страница



Между величинами ряда разница около 7−8 см, примерно та­кая же, как между кирпичом полной длины (30 см) и его «трех­четверкой» − 3/4 частью кирпича (23 см), обрубавшейся для перевязки швов и обычно помещаемой по углам.

Мы невольно задаемся вопросом: в чем причина, и какие внутренние силы побуждали зодчих на протяжении многих веков пользоваться одними и теми же величинами, строить части и де­тали сооружений в одних и тех же размерах?

Иногда по поводу методики размерения зданий высказывается уже упоминавшееся нами мнение о якобы изображении на земле схемы абстрактных геометрических фигур, последующем перене­сении размеров с помощью циркульных дуг в каком-то закоди­рованном порядке в третье измерение и получении таким путем размеров на фасадах и разрезах архитектуры. Предшествующий рассмотренный нами материал не подтверждает таких предпо­ложений.

Какова должна быть циркульная засечка, чтобы высоту вось­мерика из с. Коломенского перенести в Новый Иерусалим?

Если функционируют постоянно употребимые величины, то не нужны дуги для их переноса.

Возникает иной вопрос: не в том дело, каким путем размеры попадали в третье измерение, по-видимому, не сложнее, чем в первое и второе, но почему столь устойчивыми они оказались в четвертом измерении − во времени? Какова причина длительного функционирования системы размеров? Если на протяжении мно­гих веков она способствовала созданию прекрасных произведений древнерусской архитектуры, то в чем конкретно состояла эффек­тивность ее воздействий?

Числовые системы пропорционирования

произведений архитектуры

 

Среди современных методов проектирования и пропорциони­рования зданий существует тенденция к применению определен­ных числовых систем, благодаря чему происходит упрощение процессов проектирования и достигаются большее единство и це­лостность решений. Вводятся различные «модули», стандартизи­руются сетки колонн (6 −12 − 24 − 36 м), производится упорядочение размеров балок, плит и т.д. Существуют специальные госты. В результате в структуре здания создаются четкие по­вторяющиеся ритмы, сокращается число типоразмеров элементов, упрощается строительство.

На протяжении многовековой истории древнерусской архи­тектуры мы встречаем однотипные габариты и размеры злемен­тов, деталей, помещений. Была ли и ранее какая-либо модульная или какая-то иная система, которая благоприятствовала опреде­ленным качествам древнерусской архитектуры? Существование единой стройной системы пропорционирования представляется не­вероятным, но вопрос этот не подвергался всестороннему рас­смотрению.

Б.А. Рыбаков систему древнерусских мер представил как еди­ную целостную систему с определенными закономерностями и ха­рактерными особенностями.

Связывая систему древнерусских мер с потребностями архи­тектуры, Б.А. Рыбаков показал геометрический характер взаимо­зависимостей некоторых мерных величин. В частности, в них сла­гались соотношения сторон и диагоналей квадратов. Графически мерные величины могли изображаться системой вписанных один в другой квадратов.

Такая система мер позволяла объяснить для культовых зда­ний домонгольского периода некоторые разбивочные операции, построение прямых углов, нахождение ряда размеров в наиболее сложной подкупольной части сооружения и по основным его осям. На примере Успенской церкви Елецкого монастыря в Чер­нигове была показана такого рода разбивка.

Однако сооружения последующих периодов − XV − XVI вв. и, особенно, XVII в.− с их развитыми многообразными формами, с целыми каскадами пышных белокаменных деталей, с виртуоз­ными, льющимися, подобно музыке, изгибами линий не могли, естественно, обслуживаться системой величин, привязанных к несложной схеме нескольких квадратов. Системам пропорциони­рования вообще свойственно отражение более общих закономер­ностей, и они не объясняются какой-либо схемой здания, тем более упрощенной.       

В этот период, по-видимому, в мерах возникли новые или не­сколько изменились некоторые прежние отношения.

Различные системы, предназначенные для пропорционирова­ния и ускорения архитектурного проектирования, создаются вплоть до настоящего времени; не было препятствий к их функционированию и в прошлом; некоторые из современных находят себе преемственные прообразы в прошлых, несмотря на карди­нальные изменения, произошедшие в современной архитектуре. Укажем, например, на разработки выдающегося французского ар­хитектора Корбюзье. Его система пропорционирования, так на­зываемый «модулор» (в которой, кстати, также делаются попытки увязки с системой мер), при относительно небольшом составе ве­личин способствует достижению в архитектуре эстетически со­вершенных пропорций, обеспечивает многовариантность компо­новок и соразмерение получаемых габаритов с человеком. Вели­чины системы разработаны на основе модели человека. Система Корбюзье обобщила некоторый опыт современной и прошлой за­падноевропейской архитектуры и архитектурной математики.

Однако следует начать с работы знаменитого итальянского математика Леонардо Пизанского (Фибоначчи). В XIII в. он опубликовал числовой ряд, вошедший впоследствии в различ­ные системы пропорционирования.

Этот числовой ряд называется его именем и имеет следую­щий вид:

1−2−3−5−8−13−21−34−55−89−144−233−377 …

Каждый последующий член ряда равен сумме двух предыдущих:

1+2 = 3, 3 + 5 = 8, 8 +13 = 21...

А отношение двух соседних приближается к величине золотого сечения (Ф = 1,618...) особенно по мере увеличения порядковых номеров членов ряда:

5:3 = 1,666; 13 : 8 = 1,625; 34 : 21 = 1,619; 144 : 89 = 1,618...

Золотое сечение известно в архитектуре и изобразительном искусстве с античных времен (возможно, употреблялось и ранее). Наименование «золотое» принадлежит Леонардо да Винчи. Пропорции и отношения, построенные на золотом сечении, обла­дают исключительно высокими эстетическими качествами. Оно свойственно объектам живой природы − растениям, раковинам, различным живым организмам, включая самого человека.

Золотое сечение (его условное обозначение Ф) устанавливает наивысшую соразмерность между целым и частями. Возьмем от­резок и разделим его так, чтобы весь отрезок (а + b) относился к большей части (а), как большая часть (а) − к меньшей (b), т. е.

(a+b) ∕ а = а ∕ b.

Тогда найденное после решения квадратного уравнения отно­шение a ∕ b будет равно величине золотого сечения, выражаемого бесконечной дробью: а/b = Ф = 1,618034...

Соразмерность частей и целого − необходимое условие любого произведения искусства. Лучшие произведения архитектуры всех времен и народов всегда строились соразмерными во всех своих частях, использовали золотое сечение и производные от него функции.

Последовательное деление в золотом отношении может быть продолжено, можно получить ряд величин, подобно ряду чисел Фибоначчи, но, в отличие от него, помимо возрастания, еще и в убывающую сторону.

В восходящую сторону:

1 −1,618... −2,618... −4,236... − 6,854... −11,090...

В нисходящую сторону:

1 −0,618... −0,382... −0,236... − 0,146... −0,090...

Эти ряды называются золотыми геометрическими прогрессия­ми. Знаменателем прогрессии является величина золотого сечения (знаменателем называется число, на которое умножается предыдущий член для получения последующего). В возрастающей про­грессии − знаменатель 1,618...; в убывающей −1∕ 1,618 = 0,618…

3олотые прогрессии - единственные из всех геометрических прогрессий, где последующий член ряда может получаться так же, как и в ряду Фибоначчи, еще и сложением двух предыдущих членов (или вычитанием для убывающей). В отличие от чисел ряда Фибоначчи члены золотой геометрической прогрессии − бесконечные дроби (иногда исключением, как в данном случае, может быть лишь исходный =1).

Итак, несоизмеримые отрезки золотого сечения устанавливают наивысшую соразмерность частей и целого. В ряду Фибоначчи они возникают по мере удаления, когда отношения все более приближаются к золотому сечению.

Характерно и еще одно свойство, общее для рядов Фибоначчи и золотого сечения. Числам этих рядов свойственна многовариантная слагаемость с получением результирующего в их же си­стеме:

3 + 5 = 8,

3 + 5 +13 = 21,

3 + 5 +13 + 34 = 55,

3 + 5 + 5 = 13; 3 + 5 + 5 + 8 = 21 и т. д.

Следует обратить особое внимание на эти комбинаторные свойства чисел ряда. Понимая под комбинаторной ветвь матема­тики, исследующую комбинации и перестановки предметов, мы хотели бы подчеркнуть, что именно благодаря указанной взаимной соразмерности и сопоставимости величин ряда Фибоначчи обеспечивается возможность получения многообразных компоно­вок. Если размеры некоторого ограниченного количества элемен­тов принять в величинах ряда Фибоначчи, то становится воз­можным образование из них более крупных габаритов и форм, взаимно соразмеренных и композиционно совместимых как меж­ду собой, так и в своих частях. Величины ряда Фибоначчи спо­собствуют получению весьма интересных и многовариантных компоновочных решений.

  Видимо, поэтому живая природа в своих построениях и ком­поновках часто прибегает к отношениям золотого сечения и вели­чинам этих рядов.

Модулор Корбюзье как математическая система построен на двух рядах Фибоначчи (Корбюзье условно назвал их «линия­ми» − красной и голубой), взаимно соотносящихся между собой путем удвоения. Продолжая начатый пример, покажем схему комбинаторики модулора Корбюзье. Добавим еще ряд удвоенных величин с сохранением условных наименований рядов:

красная линия: 3−5−8−13−21−34−55...;

голубая линия: 4−6−10­−16−26−42−68 ...

В каждом из рядов существует слагаемость величин, о кото­рой говорилось выше, но, помимо нее, происходит еще и совмест­ная слагаемость величин обоих рядов. Многочисленные вариан­ты сложения можно разбить, например, на такие группы:

1) красные величины в сумме дают голубую: 3 + 5 + 13 + 21 = 42,

2) красные и голубые в сумме дают красную: 3 + 10 + 42 = 55,

3) красные и голубые в сумме дают голубую: 3 + 5 + 8 + 26 = 42,

4) красные и голубые, взятые по несколько раз, в сумме дают голубую:

2 х 5 + 2 х 16 = 42,

5) то же, но красную: 1 х 4 + 2 х 6 + 3 х 13 = 55 и т.д.

Этим далеко не исчерпываются возможные варианты. Коли­чество величин в системе хотя и удвоилось, но комбинаторика возросла многократно как в абсолютном значении, так и в отно­сительном (в расчете количества вариантов на 1 величину).

Небольшое количество величин позволило получать весьма много разнообразных компоновок.

Построив с использованием модулора всемирно известный дом в Марселе, Корбюзье писал: «Я дал задание проектировщикам мастерской составить номенклатуру всех использованных в здании размерных величин. Оказалось, что пятнадцати размерных величин было вполне достаточно. Всего пятнадцать!». Это весьма и весьма показательно. Правда, в названном количестве не учтены, видимо, суммарные, дробные и другие виды размеров; а лишь модулорные, но и они дают представление о высоких воз­можностях комбинирования с помощью системы «модулор».

Все величины модулора были увязаны с моделью человека. За исходные параметры модели Корбюзье принял рост, равный 6 футов = 183 cм, и размер в положении с поднятой рукой = 226 см. От исходных величин по математическим закономерностям чисел Фибоначчи Корбюзье вычислил все остальные и получил в сан­тиметрах:

красная линия: 16−27−43−70−113−183 ...

голубая линия: 20−33−53−86−140−226 ...

На рисунках, выполненных Корбюзье, показывалось, как эти ве­личины согласуются с размерами и положениями тела человека. 3а создание системы «модулор» Корбюзье получил патент и всемирное признание.

Укажем на некоторые распространенные виды пропорций, ко­торые строятся величинами модулора:

Ф = 1,618 ... 2/Ф = 1,236 ... Ф2/2 = 1,309 ... 2/Ф2 = 0,472 ...

Последнее отношение представляет собой одну из так называе­мых «функций Жолтовского».

И.В. Жолтовскому, выдающемуся зодчему современности, назначенному еще в первые годы Советской власти при В.И. Ленине главным архитектором Москвы, принадлежит научное обоснование и практическое внедрение в современную прак­тику эстетически наиболее ценных и изысканных пропорций в архитектуре, производных от золотого сечения. Он выявил их, исследуя лучшие произведения античности и ренессанса, точно рассчитал и применял в современной архитектуре. В частности, И.В. Жолтовский при анализе пропорции Парфенона в отноше­ниях между диаметром колонны и интерколумнием, между высо­той антаблемента и фронтона указывает отношение, составляю­щее в числовом выражении 528 : 472. Чтобы получить малый отрезок, характеризующий это отношение, Жолтовский в убы­вающем ряде золотой геометрической прогрессии берет значение третьего порядка − 0,236, удваивает его и получает 0,472. Вы­читание этой величины из единицы дает 0,528. Отношение 528 : 472 было названо «функцией Жолтовского».

Учитывая, что в древнерусской архитектуре встречается очень много отношений, как по функции Жолтовского, так и по отдель­ным ее составляющим, мы ввели в целях удобства изложения материала, следующие условные наименования, которыми ниже 6yдем пользоваться:

0,472 − первая составляющая функции Жолтовского, или со­кращенно − первая функция Жолтовского с условным обозначением 1

0,528 − вторая составляющая функции Жолтовского, или со­кращенно − вторая функция Жолтовского с условным обозначением 2.

0,528 : 0,472 = 1,118 ...− основная функция Жолтовского, или функция Жолтовского с условным обозначением Fж.

Корбюзье успешно использовал функции Жолтовского в своем марсельском доме. Перед началом строительства дома был зало­жен символический камень шириной 86 см и длиной 183 см. «Этот крупный камень, − писал Корбюзье, − действительно, об­ладает изяществом, и он послужил для прославления модуло­ра...».

В соотношении размеров камня 86 : 183 = 0,472 ... мы узнаем первую функцию Жолтовского, благодаря чему и возникло изя­щество, о котором упомянул Корбюзье.

Размеры камня (86 и 183 см) брались по величинам модуло­ра. Но в модулоре строились не все функции Жолтовского; полу­чалась главным образом лишь первая (0,472); вторая − воспроизводилась сложным путем, и практически не возникала и основ­ная функция. To же самое относится и к ряду других ценных в архитектурном отношении пропорций.

Таким образом, обладая в качестве системы пропорциониро­вания многими полезными качествами, модулор все же не создал возможностей для построения полной гаммы лучших архитектур­ных пропорций.

Упомянем еще об одном весьма существенном недостатке мо­дулора, пожалуй, принципиальном его недостатке. В своей основе система величин имеет одну модель человека. Только одного человека. Сразу же при разработке величин возникал вопрос, како­го человека взять за образец, и, по-видимому, как само собой ра­зумеющееся брался средний или выше среднего человек. В пер­вом варианте модулора он был ростом 175см, а в положении с поднятой рукой имел размер 216 см. От этих исходных величин и были подсчитаны все остальные.

Обычно средний человек мыслится более характерным и эта­лонным. Ho последующие исследования в специальных областях, связанных с проектированием оборудования и помещений со стро­го регламентированными условиями пребывания в них людей, по­казали, что подобные положения являются неправильными.

«Создание машины в расчете на „среднего человека" является серьезной ошибкой. Если машина спроектирована на основании данных величин, соответствующих 50-му перцинтилю любой груп­пы людей (т. е. средним значениям − А.П.), то ею смогут нор­мально управлять только 50%людей из этой группы. Например, 50% операторов более низкого роста будут не в состоянии дотя­нуться до органов управления. Следующая ошибка концепции „среднего человека" в том, что она игнорирует вариативность людей. Только у небольшого количества людей размеры могут быть средними во всех отношениях...». Далее в упомянутом труде следует вывод о необходимости проектирования не на сред­него человека, а на определенный размерностный диапазон людей и дается методика такого проектирования. Действительно, женщины, например, всегда меньше ростом и, если все делать по высокому или среднему человеку, для них многое в интерьере жилого помещения, на кухне и т.д. окажется недосягаемым и неудобным.

По-видимому, Корбюзье именно в этом ощущал недостатки своей системы, когда неоднократно менял модели людей. 3а первым следовал второй вариант модулора, с моделью человека ростом 183 см и размером в положении с поднятой рукой − 226 см Были и еще варианты. Все они существовали независимо один от другого, но целостной системы, в которой присутствовал бы необходимый диапазон моделей людей, у него не получилось.

Древнерусский «всемер»

 

Рассмотрим более развитый вариант системы величин пропор­ционирования, дополнив двухрядную модулорную схему новыми рядами Фибоначчи:

48

24   40

12 20 32 52

6   10    16       26  42

3    5 8       13 21           34  55

1,5 2,5 4    6,5 10,5  17 27,5 44,5

0,75 1,25 2     3,25 5,25 8,5 13,75 22,25  36 58,25 и т.д.     Все горизонтальные линии являются здесь, рядами Фибоначчи (в средней части − третий и четвертый снизу − знакомые нам ряды схемы модулора). Во вновь дополненных рядах, так же как и в прежних, сумма двух предыдущих членов равна последующе­му, а отношение двух соседних приближается к величине золотого сечения (тем больше, чем дальше от начала ряда). По верти­кальным направлениям мы продолжили структуру удвоения ве­личин (вверх) и половинных значений (вниз); поэтому отноше­ние по вертикали составляют 1 : 2 : 4: 8 ... .

В этой схеме каждый из горизонтальных рядов обладает ком­бинаторикой одиночного ряда Фибоначчи; каждая пара рядов комбинаторикой модулора Корбюзье, а весь комплекс величин − еще более высокими комбинаторными свойствами. Взаимозави­симости между величинами распространяются теперь на все их поле. Любую из величин можно получить множеством различных вариантов и комбинаций. Приводить все варианты мы, разумеется, не в состоянии, столь их мнoгo; покажем лишь на одном из при­меров возможное получение одной и той же величины слагаемы­ми разных рядов:

3 + 52 = 55

10 + 13 + 32 = 55

4 + 5 + 13 + 16 + 17 =55

2 х 3 + 2 х 6,5 + 2 х 8 + 2 х 10 = 55

Таким образом, рассмотренная нами схема обладает несравни­мо более высокими комбинаторными свойствами, чем две преды­дущие. Это обстоятельство является чрезвычайно важным для пропорционирования в архитектуре − одним из наиглавнейших. Однообразие, многообразие и возможность выбора зодчим желае­мого варианта компоновки зависят, в конечном счете, от количест­ва вариантов и их эстетического богатства или скудности. Имен­но по этой причине модулор Корбюзье оказался значительным шагом вперед − по сравнению с одиночным рядом Фибоначчи − и получил всеобщее признание. Рассмотренная же схема являет собой такой же, если не еще больший, шаг вперед по сравнению с модулором. Эта схема отображает систему величин, функцио­нировавших у нас на Руси еще за пять-шесть веков до Корбюзье, а может быть и ранее. Подобно модулору, она была связана также с системой мер и обладала многими замечательными свойствами. Как системе пропорционирования, мы дали ей условное наименование древнерусский «всемер», которое, по нашему мнению, должно отражать ее всеобъемлющий характер − функ­ционирование в архитектуре и в обычных мерных операциях.


Дата добавления: 2021-02-10; просмотров: 60; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!