Определение реакций опор и моментов
Защемления
Иметь представление о видах опор и возникающих реакциях в опорах.
Знать три формы уравнений равновесия и уметь их использовать для определения реакций в опорах балочных систем.
Уметь выполнять проверку правильности решения.
Виды нагрузок и разновидности опор
Виды нагрузок
По способу приложения нагрузки делятся на сосредоточенные и распределенные. Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосредоточенной.
Часто нагрузка распределена по значительной площадке или линии (давление воды на плотину, давление снега на крышу и т.п.), тогда нагрузку считают распределенной.
В задачах статики для абсолютно твердых тел распределенную нагрузку можно заменить равнодействующей сосредоточенной силой (рис. 6.1).
q — интенсивность нагрузки; l — длина стержня;
G = ql — равнодействующая распределенной нагрузки.
Разновидности опор балочных систем (см. лекцию 1) Балка — конструктивная деталь в виде прямого бруса, закрепленная на опорах и изгибаемая приложенными к ней силами.
Высота сечения балки незначительна по сравнению с длиной. Жесткая заделка (защемление) (рис. 6.2)
Тема 1.4. Балочные системы 43
|
|
Опора не допускает перемещений и поворотов. Заделку заменяют двумя составляющими силы Ra x и Ra v и парой с моментом M r . Для определения этих неизвестных удобно использовать систему уравнений в виде
Каждое уравнение имеет одну неизвестную величину и решается без подстановок.
Для контроля правильности решений используют дополнительное уравнение моментов относительно любой точки на балке, например В:
Шарнирно-подвижная опора (рис. 6.3)
Опора допускает поворот вокруг шарнира и перемещение вдоль опорной поверхности. Реакция направлена перпендикулярно опорной поверхности.
Шарнирно-неподвижная опора (рис. 6.4)
Опора допускает поворот вокруг шарнира и может быть заменена двумя составляющими силы вдоль осей координат.
Балка на двух шарнирных опорах (рис. 6.5)
Не известны три силы, две из них — вертикальные, следовательно, удобнее для определения неизвестных использовать систему
44 Лекция 6
|
|
уравнений во второй форме:
Составляются уравнения моментов относительно точек крепления балки. Поскольку момент силы, проходящей через точку крепления, равен 0, в уравнении останется одна неизвестная сила.
n
Из уравнения Σ F kx = 0 определяется реакция R b x .
0
n
Из уравнения Σ mkA (Fk) = 0 определяется реакция R b у .
0
n
Из уравнения Σ mkB (Fk ) = 0 определяется реакция R а y .
Для контроля правильности решения используется дополнительное уравнение
При равновесии твердого тела, где можно выбрать три точки, не лежащие на одной прямой, удобно использовать систему уравнений в третьей форме (рис. 6.6):
Примеры решения задач
Пример 1. Одноопорная (защемленная) балка нагружена сосредоточенными силами и парой сил (рис. 6.7). Определить реакции заделки.
|
|
Тема 1.4. Балочные системы 45
Решение
1. В заделке может возникнуть реакция, представляемая двумя
составляющими (Ra v ;Ra x ), и реактивный момент МА. Наносим на схему балки возможные направления реакций.
Замечание. Если направления выбраны неверно, при расчетах получим отрицательные значения реакций. В этом случае реакции на схеме следует направить в противоположную сторону, не повторяя расчета.
В силу малой высоты считают, что все точки балки находятся на одной прямой; все три неизвестные реакции приложены в одной точке. Для решения удобно использовать систему уравнений равновесия в первой форме. Каждое уравнение будет содержать одну неизвестную.
2. Используем систему уравнений:
46 Лекция 6
Знаки полученных реакций (+), следовательно, направления реакций выбраны верно.
|
|
3. Для проверки правильности решения составляем уравнение моментов относительно точки В.
Подставляем значения полученных реакций:
-377,94 + 45,98 • 10 - 210 • 0,866 + 100 = 0;
-559,8 + 559,8 = 0.
Решение выполнено верно.
Пример 2. Двухопорная балка с шарнирными опорами А и В нагружена сосредоточенной силой F , распределенной нагрузкой с интенсивностью q и парой сил с моментом т (рис. 6.8а). Определить реакции опор.
Решение
1. Левая опора (точка А) — подвижный шарнир, здесь реакция направлена перпендикулярно опорной поверхности.
Тема 1.4. Балочные системы 47
Правая опора (точка В) — неподвижный шарнир, здесь наносим две составляющие реакции вдоль осей координат. Ось Ох совмещаем с продольной осью балки.
2. Поскольку на схеме возникнут две неизвестные вертикальные реакции, использовать первую форму уравнений равновесия нецелесообразно.
3. Заменяем распределенную нагрузку сосредоточенной:
Сосредоточенную силу помещаем в середине пролета, далее задача решается с сосредоточенными силами (рис. 6.86).
4. Наносим возможные реакции в опорах (направление произвольное).
5. Для решения выбираем уравнение равновесия в виде
6. Составляем уравнения моментов относительно точек крепления:
Реакция направлена верно.
Реакция отрицательная, следовательно, RA y нужно направить в противоположную сторону.
48 Лекция 6
7. Используя уравнение проекций, получим:
Rb x — горизонтальная реакция в опоре В.
Реакция отрицательна, следовательно, на схеме ее направление будет противоположно выбранному.
8. Проверка правильности решения. Для этого используем четвертое уравнение
n
равновесия Σ F ky = 0:
0
- RAy - G + RBy - F cos 45° = 0.
Подставим полученные значения реакций.
Если условие выполнено, решение верно:
-5,1 - 12 + 34,6 - 25 · 0,7 = 0.
Контрольные вопросы и задания
1. Замените распределенную нагрузку сосредоточенной и определите расстояние от точки приложения равнодействующей до опоры А (рис. 6.9).
2. Рассчитайте величину суммарного момента сил системы относительно точки А (рис. 6.10).
Тема 1.4. Балочные системы 49
3. Какую из форм уравнений равновесия целесообразно использовать при определении реакций в заделке?
4. Какую форму системы уравнений равновесия целесообразно использовать при определении реакций в опорах двухопорной балки и почему?
5. Определите реактивный момент в заделке одноопорной балки, изображенной на схеме (рис. 6.11).
6. Определите вертикальную реакцию в заделке для балки, представленной на рис. 6.11.
50 Лекция 7
ЛЕКЦИЯ 7
Дата добавления: 2019-09-13; просмотров: 3618; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!