Проведение искусственного дыхания



Искусственное дыханиеначинают делать немедленно после освобождения от электрического тока и проводят непрерывно до появления положительного результата или бесспорных признаков действительной смерти (трупные пятна и окоченение).Наблюдались случаи, когда после поражения током люди были возвращены к жизни лишь через несколько часов непрерывного оказания помощи. Целесообразность продолжения принимаемых мер определяет врач.
Прежде чем непосредственно приступать к выполнению процедуры, необходимо быстро освободить пострадавшего от всего, что стесняет дыхание: расстегнуть ворот, ослабить пояс и т.д.; быстро освободить рот от слизи и посторонних предметов, например от съемных зубных протезов. Если челюсти в результате спазмов оказались крепко стиснутыми, четыре пальца обеих рук ставят позади углов нижней челюсти под ушами и, упираясь большими пальцами в челюсть снизу, выдвигают ее так, чтобы нижние зубы оказались впереди верхних. Если этим способом не удается раскрыть рот, осторожно, чтобы не сломать зубы, между задними коренными зубами вставляют дощечку, металлическую пластинку, ручку ложки или другой подобный предмет и с их помощью разжимают челюсти.
Техника вдувания воздуха в рот или в нас заключается в следующем. Пострадавший лежит на спине. Оказывающий помощь до начала искусственного должен обеспечить свободное прохождение воздуха в легкие через дыхательные пути. Голову пострадавшего надо запрокинуть назад, для чего подкладывают одну руку под шею, а другой рукой надавливают на лоб. Этим обеспечивается отхождение корня языка от задней стенки гортани и восстановлении проходимости дыхательных путей. При указанном положении головы обычно рот раскрывается. Если во рту есть слизь, ее вытирают платком или краем рубашки, натянутым на указательный палец, еще раз проверяют, нет ли во рту посторонних предметов, которые должны быть удалены, после чего приступают к вдуванию воздуха в рот или нос. При вдувании воздуха в рот оказывающий помощь плотно (можно через марлю или платок) прижимает свой рот ко рту пострадавшего, а своим лицом (щекой) или пальцами руки, находящейся на лбу, зажимает ему нос, чтобы обеспечить поступление всего вдуваемого воздуха в его легкие.
При невозможности полного охвата рта пострадавшего следует вдувать воздух в нос, плотно закрыв при этом рот пострадавшего. Затем спасающий откидывается назад и делает новый вдох, а в это время грудная клетка пострадавшего опускается и он делает пассивный выдох.
Во время проведения искусственного дыхания надо следить, чтобы при каждом вдохе у пострадавшего расширялась грудная клетка, а также внимательно наблюдать за его лицом: если пошевелятся губы или веки или будет замечено глотательное движение, проверяют, не произойдет ли самостоятельного вдоха; если после нескольких мгновений ожиданий окажется, что пострадавший не дышит, искусственное дыхание немедленно возобновляют.
Вдувание воздуха производят каждые 5-6 сек, что соответствует частоте дыхания 10-12 раз в минуту. После каждого вдувания ("вдоха") освобождают рот и нос пострадавшего для свободного выхода воздуха из его легких.

Наружный (непрямой) массаж сердца

Наружный (непрямой) массаж сердца поддерживает кровообращение как при остановившемся сердце, так и при нарушенном ритме его сокращений.
Для проведения непрямого массажа сердца пострадавшего следует уложить на спину на жесткую поверхность (скамью или пол). Обнажить у него грудную клетку: вся стесняющая одежда, пояс расстегиваются или снимаются. Оказывающий помощь становится сбоку от пострадавшего так, чтобы иметь возможность наклониться над ним (если пострадавший лежит на полу - становятся рядом на колени).Определив местоположение нижней трети грудины, накладывают на нее основание ладони (подушечку) разогнутой кисти. Ладонь другой руки накладывают поверх первой и начинают ритмично надавливать на нижний край грудины.
Надавливать на грудину надо резкими толчками: при этом грудина смещается вниз (к спине) в сторону позвоночника на 3-5 см. Сердце сдавливается, и из его полости выдавливается кровь в кровеносные сосуды. Надавливание необходимо повторять примерно 1 раз в секунду.
Следует остерегаться надавливания на окончания ребер, так как это может привести к их перелому. Нельзя надавливать ниже края грудины на мягкие ткани: этим можно повредить расположенные в брюшной полости органы и в первую очередь печень.
Обязательным условием обеспечения организма кислородом при отсутствии работы сердца является одновременное с массажем сердца проведение искусственного дыхания. Поскольку надавливание на грудную клетку затрудняет ее расширение при вдохе, вдувание воздуха проводится во время паузы, которая специально соблюдается через каждые четыре-шесть надавливаний на грудину.
Как правило, проводить оживление должны два специально обученных человека, каждый из которых может поочередно проводить искусственное дыхание и массаж сердца, меняя друг друга через каждые 5-10 мин. Это менее утомительно, чем беспрерывное проведение одной и той же процедуры (в особенности массажа сердца).
В крайнем случае помощь может быть оказана и одним человеком, который чередует искусственное дыхание и массаж сердца в следующем порядке: после двух-трех глубоких вдуваний воздуха в рот (или в нос) пострадавшего, он проводит 15 надавливаний на грудину (массаж сердца), после чего вновь производит два-три глубоких вдувания воздуха и приступает к массажу сердца и т.д.
В результате правильного проведения искусственного дыхания и массажа сердца у пострадавшего появляются признаки улучшения: серо-землянистый с синеватым оттенком цвет лица сменяется розоватым; начинают устанавливаться самостоятельные, все более равномерные дыхательные движения; сужаются зрачки. Узкие зрачки указывают на достаточное снабжение мозга кислородом, а начинающееся расширение - об ухудшении кровоснабжения. Тогда необходимы более эффективные меры, например поднять пострадавшему ноги на 40-60 см, чтобы способствовать лучшему притоку крови в сердце из вен нижней части тела. Для поддержания ног в поднятом положении под них подкладывают какой-либо сверток.
Искусственное дыхание и массаж проводят до появления самостоятельного дыхания и восстановления деятельности сердца. Однако появление слабых вдохов даже при наличии пульса не дает оснований для прекращения искусственного дыхания. О восстановлении работы сердца судят по появлению собственного, не поддерживаемого массажем регулярного пульса. Для проверки прерывают массаж на 2-3 с и, если пульс не обнаруживается, массаж немедленно возобновляют.
После появления первых признаков улучшения наружный массаж сердца и искусственное дыхание продолжают еще в течение 5-10 мин, чтобы вдувание совпадало по времени с собственным вдохом.

Билет 19

Газовые горелки-устройство обеспечивающее смешивание газа с воздухом,подачу газовоздушной смеси к месту сжигания,а так же устойчивое горение.

Горелки подразделяются на:1)по Р газа и воздуха:по газу быв.низкого Р-до 500 мм.в.ст.;среднего Р от500-10000 мм. В. Ст.;и высокого Р-более 10000 мм.в.ст.По воздуху быв.:низкого Р-до 100 мм.в.ст.;среднегоР-от100-300мм.в.ст.;и высокого Р-более 300 мм.в.ст. 2)По способу подачи воздуха на 4 вида:Дифузионные,инжекционные,кинетические,безпламенные. 3)По характеру горения газ. топлива в топке котла:Длиннофакельное ,короткофакельное.

1.ДИфФУЗИОННЫЕ ГОРЕЛКИ.диффузия это явление проникновения молекул одного вещества среди молекул другого.

В диф-ных горелках 100% вторичного воздуха(тот что находится внутри котла,а не тот что мы вдуваем)методом дифузии перемешивается с газом и происходит процесс горения.

В котельных могут использовать подовую (т.е в нижней части котла)щелевую (щель сделана из кирпича т.е. обложена так)дифузионную горелку.Она изготовлена из труб в мастерских.Диаметр отверстий и их шаг определяются расчетом.В этих горелках бывают 1 или 2 ряда отверстий.Шаг отверстий от 5 до 10 диаметров отверстий.

Подовую щелевую дифуз-ую горелку устанавливают в поддувале котла,а сверху на стальную рамму из огнеупорного кирпича выкладывают щели по всей длине горелки.Самое широкое распространение получили форкамерные горелки.Форкамеры из огнеупорного кирпичи выкладывают в топке по всей длине горелки.Форкамерные горелки более надежные в работе.Равномерно подают тепло на секции для подогрева воды.Применяют в котельной молой мощности.

2.ИНЖЕКЦИОННЫЕ ГОРЕЛКИ.(горелки с принудительной подачей воздуха)Инжекулл-это явление подсоса воздуха струёй вылетающего газа из сопла.Воздух который подсасывается наз. Первичный.Инжек-ые горелки предназначены для предварительного смешивания газа и воздухом и подачи газовоздушной смеси в топку котла.Д-ая горелка состоит из 1)сопла-форсунки.2)регулятора воздуха3)сЪужающаяся часть-конфизор4)смеситель5)дифузор6)горелка6)стабилизатор горения(это расширение после горизонтальной части (что бы по всей горелки газ выходил равномерно.

Инж-ые гор. Быв.:Низкого Р(это самые распространенный класс горелок,бытовых газовых приборов и котельной малой производительности.В этих горелках расход газа до 10 м3 в час. И среднего Р-(в котельных средней мощности с расходом газа от 6 до 150 м3в час.

Недостатки:разрушение насадок в следствии температурного режима горит металл,;порча горелок в следствии проскока пламени.(ПРОСКОК_-скорость пламени выше скорости выхода газовоздушной смеси)Достоинства:их можно применять в топочных устройствах с различной величиной регулирования газа и воздуха

3.КИНЕТИЧЕСКИЕ ГОРЕЛКИ.применяютс в котлах большой производительности.Они бывают чисто газовые(газ) и комбинированные(газ,мазут).В этих горелках воздух подаётся 100% принудительно.В таком количестве сколько его необходимо для полного горения газа.

Для регулирования подачи воздуха устанавливаются направляющие аппараты.А для качественного смешивания самой горелки устанавливаются под углом лопатки(лопатки вращаются для лушего смешивания)Количество газа в горелку подается через сопло .Сост. из:патрубок для подвода газа,;Лопатки для смешивания.;Корпус горелки.;Патрубок для подвода воздуха.;И газовое сопло.Недостаток:в следствии температурного режима перегорают конструктивные элементы горелок в топочной части(контрольный элктрод,запальнозащитное устройство,лопатки и др.)

4.КОМБИНИРОВАННЫЕ ГАЗОМАЗУТНЫЕ-горелки типа ГМГ(газ.маз.горелка)предназначены для подачи топлива газа или мазута.Очень практичны.Применяются при перебоях газа,когда необходимо срочно перейти на др. топливо.Когда газовое топливо не обеспечивает нужного температурного режима топки.

5.Беспламенные горелки-в быту,с/х.,для отопления свинарников ,гаражей,применяются и в котельных.Это горелки качественного ожига топлива.Газовая смесь поступает в тунельки в которых происходит сжигание газа Они бывают :инжекционная тунельная и инжекционная панельная.Пламени не бывает(лучистого факела).Тунель выкладывается из огнеупорного кирпича,в топку поступает лишь тепло,панель раскаляется как металл.Стабилизатора нет.Только конвективный обмен.

____________________________________

БОЛЕЕ ЗАЗВЕРНУТО:

1)- Инжекционные горелки. Достоинства и недостатки инжекционных горелок.

Раздел: Технология нагрева и нагревательное оборудование

Инжекционные горелки — горелки, в которых образование газовоздушной смеси происходит за счет энергии струи газа. Инжектор является основным элементом инжекционной горелки. С помощью инжектора доставляется воздух из окружающего пространства внутрь горелок.

Горелки могут быть полного предварительного смешения газа с воздухом или с неполной инжекцией воздуха, это разделения зависит от количества воздуха, поставляемом инжектором.

Классификация горелок 1
Классификация горелок 2

Горелки с неполной инжекцией воздуха по способу смешения газа относятся к горелкам с частичным предварительным смешением. В этом случае в зону горения поступает только часть воздуха необходимого для сгорания, оставшаяся часть добывается из окружающего пространства. Работа этих горелок возможна при низком давлении газа. Еще они носят название инжекционные горелки низкого давления. Состоят инжекционные горелки из регулятора подачи первичного воздуха, сопла, смесителя и распределительного коллектора.

Регулятор подачи первичного воздуха 1 (рис. 1) состоит из вращающегося диска или шайбы, занимается непосредственно регулированием количества поступающего в горелку первичного воздуха. Форсунка 2 необходима для превращения потенциальной энергии давления газа в кинетическую, другими словами она придает газовой струе скорость, обеспечивающую подсос воздуха. Смеситель газовой горелки состоит из трех частей: конфузора 3, горловины 4 и диффузора 5. В конфузоре при выходе газовой струи из сопла создается разрежение и подсос воздуха. Горловина 4 – самая узкая часть смесителя, в ней происходит выравнивание струи газовоздушной смеси. В диффузоре 5 происходит окончательное перемешивание газовоздушной смеси и увеличение ее давления за счет снижения скорости.

Инжекционные атмосферные газовые горелки


Рис. 1: а – низкого давления, б – горелка для чугунного котла, 1 – регулятор подачи первичного воздуха, 2 – сопло, 3 – конфузор, 4 – горловина, 5 – диффузор, 6 – распределительный коллектор, 7 – отверстия

Газовоздушная смесь из диффузора перемещается в распределительный коллектор б, распределяющий ее по отверстиям 7. Форма коллектора и расположение отверстий зависят от типа и назначения горелок.

Достоинства и недостатки инжекционных горелок

К достоинствам инжекционных горелок относятся:

· простота конструкции;

· устойчивая работа горелки при изменении нагрузок;

· надежность работы и простота обслуживания;

· отсутствие вентилятора, электродвигателя для его привода, воздухопроводов к горелкам;

· возможность саморегулирования, т. е. поддержания постоян ного соотношения газ—воздух.

К недостаткам инжекционных горелок относятся:

· значительные габариты горелок по длине, особенно горелок увеличенной производительности (например, горелка ИГК-250-00 номинальной производительностью 135 м3/ч имеет длину 1 914 мм);

· высокий уровень шума у инжекционных горелок среднего давления при истечении газовой струи и инжектировании воздуха;

· зависимость поступления вторичного воздуха от разрежения в топке (для инжекционных горелок низкого давления), плохие условия смесеобразования в топке, приводящие к необходимости увеличения общего коэффициента избытка воздуха доос=1,3…1,5 и даже выше для обеспечения полного сгорания топлива.

Горелки полного смешения газа с воздухом работают обычно в диапазоне давлений от 2 кПа до 6 кПа. С помощью повышенного давления газа обеспечивается инжекция необходимого для полного сгорания газа воздуха. Этот вид горелок еще называют инжекционные горелки среднего давления. Применение эти горелки нашли в основном в отопительных котлах и для обогрева промышленных печей. Тепловая мощность горелок полного смешения обычно не превышает 2 МВт. Громоздкость смесителей и борьбы с проскоком пламенем является основной помехой повышения их мощности.

1. Горелки диффузионные:

· низкого давления;

· высокого давления;

2. Горелки инжекционные однопроводные:

· низкого давления с частичным предварительным смешением газа и воздуха — так называемые атмосферные горелки;

· низкого давления с полным предварительным смешением (используются для низкокалорийных и среднекалорийных газов);

· среднего давления с полным смешением газов (используются для низкокалорийных, среднекалорийных газов и высококалорийных газов).

3. Горелки инжекционные двухпроводные:

· среднего давления с полным предварительным смешением;

· низкого давления с полным предварительным смешением.

4. Горелки двухпроводные дутьевые:

· низкого давления полного внутреннего смешения;

· низкого давления внешнего сешения;

· низкого давления внутренне-внешнего смешения;

· среднего давления полного внутреннего смешения;

· среднего давления внешнего сешения;

· среднего давления внутренне-внешнего смешения;

5. Горелки комбинированные газо-мазутные (обычно двухпроводные):

· низкого давления;

· среднего давления.

 В настоящее время на водотрубных котлах (ДЕ, ДКВР) и водогрейных агрегатах (КВ-ГМ) устанав­ливаются газомазутные горелки различных конструкций, удовлетворяющие требованиям экономичной и безопасной эксплуатации. Главным при этом является обеспечение примерно равного качества сжи­гания и длины факела на обоих видах топлива (природном газе и мазуте).

Газомазутные горелки представляют собой комплекс из газовой горелки и мазутной форсунки и в зависимости от конструкции предназначены для раздельного или совместного сжигания газового и

Жидкого топлива. Для установки горелки во фронтовой стенке (обмуровке) котла выполняют амбразу­ру.

В теплогенераторах ДКВР наибольшее распространение получили короткофакельные газомазутные горелки ГМГ и их модернизированный вариант ГМГм, установка которых показана на рис. П21, а ос­новные характеристики которых приведены в [12, табл. 7.52 ].

Горелка ГМГм отличается от ГМГ устройством газового насадка, имеющего два ряда газовыпу­скных отверстий, направленных под углом 90° друг к другу, которые закручивают поток первичного и

Вторичного воздуха, что обеспечивает снижение коэффициента избытка воздуха до 1,05, повышение КПД котла на 1 %, а также улучшает его эксплуатационные показатели.

Площадь сечения трубопровода вторичного воздуха должна быть в 1,5.2 раза больше площади се­чения патрубка первичного воздуха горелки. При установке на котле нескольких горелок их производи­тельность регулируют изменением тепловой мощности всех горелок одновременно, так как включение или отключение части горелок приводит к их перегреву и выходу из строя оставшихся в работе. Регу­лирование тепловой мощности производится изменением расхода топлива и количеством соответствен­но вторичного воздуха (шибер первичного воздуха открыт полностью).

Устройство горелки ГМГм представлено на рис. П22, а. Газомазутная горелка ГМГм состоит из га­зовоздушной части 1, паро-механической форсунки 6, лопаточных завихрителей первичного 5 и вто­ричного 2 воздуха, монтажной плиты 3 со стаканом 7 для установки запально-защитного устройства и заглушки для закрывания форсуночного канала при снятии форсунки. Закрутка воздуха в горелке обои­ми регистрами производится в одну сторону (правого или левого вращения в зависимости от компонов­ки завихрителя). В качестве стабилизатора пламени используется конический керамический туннель 4.

Зажигание горелки производят при закрытых воздушных шиберах: плавно открывают запорное устройство на газопроводе, после воспламенения газа - шибер первичного воздуха, а затем с помощью шибера вторичного воздуха и регулирующего устройства на газопроводе устанавливают заданный ре­жим. Во избежание отрыва факела при пуске тепловая мощность горелки не должна превышать 25.50 % от номинальной мощности, а давление газа должно быть больше давления вторичного воздуха. При работе горелки на газе мазутную форсунку удаляют из топки, а торцевое отверстие канала закрывают заглушкой.

Устройство мазутной форсунки ГМГм представлено на рис. П22, б. Мазут под давлением 1,25.2 МПа по внутренней трубе форсунки подводится к распыливающей головке, где последовательно уста­новлены: шайба распределительная 8 с отверстиями (от одного до двенадцати), а также завихрители - топливный 9 и паровой 10, имеющие по три тангенциальных канала. Шайба и завихрители крепятся с помощью накидной гайки 11. Мазут проходит через отверстия распределительной шайбы, далее по тан­генциальным каналам попадает в камеру завихрения и, выходя через сопловое отверстие, распыливает - ся за счет центробежных сил. При снижении тепловой мощности до 70 % от номинальной по наружной трубе форсунки подается пар, который через каналы накидной гайки проходит к каналам парового за - вихрителя и, выходя закрученным потоком, участвует в процессе распыливания мазута.

При переходе с газового топлива на жидкое (мазут) в форсунку предварительно подают пар, затем мазут под давлением 0,2.0,5 МПа. После его воспламенения отключают газ и регулируют режим. Для перехода с жидкого топлива на газовое снижают давление мазута до 0,2.0,5 МПа и постепенно подают газ. После воспламенения газа прекращают подачу мазута и устанавливают заданный режим.

Перед розжигом горелки на мазуте следует проверить положение мазутной форсунки и продуть ее паром. Первоначально розжиг рекомендуется производить на газе или легком топливе (дизельное топ­ливо, керосин). При их отсутствии растопку производят дровами с последующим переходом на мазут. При работе горелок на мазуте в пределах 70.100 % от номинальной тепловой мощности достаточно механического распыления мазута, а на более низких нагрузках (менее 70 %) для распыления применя­ют пар под давлением 0,15.0,2 МПа. Расход пара около 0,3 кг на 1 кг мазута. Для распыления не реко­мендуется использовать пар с высокой влажностью (увеличение влажности снижает качество распыле­ния) и пар с температурой более 200 °С (возрастает опасность коксования распылителей).

Горелку ГМГм выключают плавным, пропорциональным уменьшением подачи топлива и вторич­ного воздуха. После полного прекращения подачи топлива воздух должен поступать в горелку для ох­лаждения 10.12 мин. После этого полностью закрывают шибер вторичного, а затем первичного возду­ха и вынимают форсунку из горелки для того, чтобы в топке не образовалась газовоздушная, огнеопас­ная смесь.

Уменьшение угла раскрытия туннеля, неправильная установка или засорение форсунки при сжига­нии мазута способствуют образованию кокса в туннеле, вибрации и росту сопротивления горелки по воздуху.

В котлах ДЕ устанавливают горелки ГМ или ГМП, конструкции которых одинаковы, а основные характеристики даны в [12, табл. 7.53]. На фронтовой стене каждого котла расположена одна горелка, которая крепится с помощью специального фланца. Отверстие, образующееся при снятии фланца с за - вихрителем, используется в качестве лаза.

Общий вид горелки ГМ представлен на рис. П23. Угол раскрытия амбразур для горелок ГМ - 50°, общая длина амбразуры - 250 мм, цилиндрической части - 115 мм. Горелка состоит из форсуночного узла, периферийной газовой части и однозонного (для всех горелок ГМ) воздухонаправляющего уст­ройства. В форсуночный узел входят паро-механическая (основная) форсунка 1, расположенная по оси горелки, и устройство 2, смещенное относительно оси, предусматривающее установку сменной форсун­ки, которая включается на непродолжительное время, необходимое для замены основной форсунки.

Газовая часть горелки состоит из газового кольцевого коллектора 3 прямоугольной формы (в сече­нии) с газовыпускными отверстиями и подводящей трубы. К торцу коллектора приварен кольцевой обод полукруглой формы. Внутри коллектора имеется разделительная обечайка, которая способствует более равномерному распределению газа по коллектору. Воздухонаправляющее устройство 4 представ­ляет собой лопаточный завихритель осевого типа с неподвижными профильными лопатками, установ­ленными под углом 45°. Воздух, поступающий по воздуховоду, ограниченному фронтом 5котла и ме­таллической стенкой 6, делится на два потока: первичный направляется в воздушный короб 7 горелки, закручивается в завихрителе 4 и, смешиваясь с газом, участвует в процессе сжигания в первой половине футерованной камеры сгорания котла; вторичный воздух поступает в камеру сгорания через щель, обеспечивая полное сгорание газа.

Мазутные форсунки могут быть паро-механические или акустические. Паро-механические форсун­ки конструктивно идентичны форсункам горелок ГМГм (рис. П22). Акустические форсунки отличаются от паро-механических форсунок отсутствием парового завихрителя, который заменяется специальной втулкой.

Паро-механическая форсунка состоит из распыливающей головки, ствола и корпуса. Распыливаю - щая головка является основным узлом форсунки и состоит из парового и топливного завихрителей, рас­пределительной шайбы, прокладки, втулки и накидной гайки. Мазут проходит по внутренней трубе ствола и попадает в топливную ступень форсунки. Пар проходит по наружной трубе ствола и попадает в паровую ступень форсунки.

Все горелки ГМ оборудованы запально-защитным устройством 8 с ионизационным датчиком ЗЗУ-

4.

В водогрейных котлах КВ-ГМ-10 (-20, -30) устанавливают ротационные газомазутные горелки РГМГ, устройство которых представлено на рис. П24, а основные характеристки приведены в [12, табл. 7.51].

В теплогенераторах КВ-ГМ-10 (-20, -30) коллекторы фронтового экрана образуют квадрат, в котором размещена амбразура горелки, выполненная из пластичной хромитовой массы, нанесенной по шипам. В амбразуру (рис. П19) устанавливают ротационные газомазутные горелки РГМГ-10 (-20, -30). Горелки состоят из ротационной мазутной форсунки 11, газовой части 7, завихрителя вторичного воздуха 10, ко­роба первичного воздуха, кольца рамы 3, переднего кольца 8 и запально-защитного устройства (ЗЗУ) 5. Из комплекта ЗЗУ на трубе 6 горелки устанавливают газовый запальник и фотодатчик. Труба 6 закреп­лена на крышке 19.

Газовая часть состоит из газораздающей кольцевой камеры 7 и двух газоподводящих труб 4, соеди­ненных с приемным патрубком 1. Газораздающая камера расположена у устья горелки и имеет один ряд газовыпускных отверстий 12. Опорная труба 14 поддерживает газораздающую камеру снизу, а рамки 13 служат для центровки завихрителя вторичного воздуха. Воздухонаправляющее устройство вторичного воздуха состоит из воздушного короба 2, завихрителя 10, переднего кольца 8, образующего устье горел­ки и амбразуры 9. Завихритель вторичного воздуха (осевого типа с гнутыми лопатками, установленны­ми под углом 40° к оси горелки) можно перемещать вручную вдоль оси горелки по направляющим ра­мы 16 с помощью подшипников 15, тяг и рукояток. Задняя часть 17 наружного обода завихрителя слу­жит воздушным шибером.

Ротационная мазутная форсунка 11 представляет собой полый вал-ротор, на котором закреплены гайки питателя и распыливающий стакан. Распыливающий стакан - это полый цилиндр, полость кото­рого полирована, хромирована и образована двумя усеченными конусами.

В торце стакана просверлены отверстия для прохода части первичного воздуха в воздушные каналы гайки - питателя, что уменьшает возможность коксования внутренних поверхностей стакана и самой гайки. Крутящий момент от электродвигателя к валу-ротору форсунки передается клиноременной пере­дачей. Топливо в форсунку подается по консольной топливной трубке, размещенной в центральном от­верстии вала-ротора, и далее, под действием центробежных сил, через четыре радиальных канала вытека­ет на внутреннюю стенку распыливающего стакана, образуя пленку, которая движется в осевом направ­лении (в топку). Пленка топлива стекает с выходной кромки стакана, становится тонкой и затем распа­дается на капли. Для получения необходимого угла раскрытия конуса к выходной кромке стакана пода­ется первичный воздух, который способствует более тонкому распыливанию топлива.

В передней части форсунки к кожуху на резьбе крепится завихритель первичного воздуха, лопатки которого наклонены к оси форсунки на 30°, а корпус имеет окна 18 для подвода воздуха к завихрителю. Первичный воздух к форсунке подается от вентилятора высокого давления, а для регулирования его ко­личества внутри патрубка первичного воздуха установлен шибер. При сжигании мазута недопустимо нагарообразование на внутренней стенке стакана. После отключения форсунки ее выводят из воздушно­го короба и очищают внутреннюю поверхность стакана деревянным или алюминиевым ножом и про­мывают соляркой. Повышенный шум и вибрация свидетельствуют об износе подшипников, несиммет­ричности факела, смещения ротора форсунки.

2)- Регулятор давления универсальный Казанцева типа РДУК

Регулятор давления универсальный Казанцева типа РДУК предназначен для (РЕДУЦИРОВАНИЯ)снижения давления газа и автоматического поддержания заданного давления газа на выходе независимо от изменения расхода газа и входного давления. И устанавливается в газорегуляторных пунктах (ГРП), газорегуляторных установках (ГРУ). Регулятор состоит из двух основных узлов - регулирующего клапана и пилота .

Принцип действия :На мембрану с одной стороны давит газ ,а с другой стороны пружина ,которая уравновешивает это давление .Таким образом, при любом отклонении выходного давления от заданного, изменение давления под большой мембраной вызывает перемещение основного клапана в новое равновесное положение, при котором выходное давление восстанавливается. Например, если при уменьшении потребления газа выходное давление повысится, то мембрана и клапан регулятора управления несколько опустятся. При этом расход газа через малый клапан уменьшится, что вызовет уменьшение давления под мембраной регулирующего клапана. Основной клапан под действием входного давления начнет закрываться до тех пор, пока его проходное сечение не будет соответствовать новому потреблению газа и выходное давление не восстановится.

 

БОЛЕЕ ПОДРОБНО:

Редуцирование газа в регуляторе РДУК осуществляется изменением положения тарельчатого плунжера с мягкой резиновой прокладкой относительно сменного седла , расположенного в чугунном корпусе регулирующего клапана. Плунжер через посредство штока и груза, лежащего на мембране, жестко связан с последней, и, следовательно, размер их перемещений (хода) одинаков. На тарелку плунжера сверху воздействует входное давление, снизу - выходное. Изменение входного давления в процессе регулирования может за счет неразгруженности плунжера вызвать изменение выходного давления. Это влияние входного давления сводится к минимуму двухимпульсной системой обратной связи, в которой импульс выходного давления подается одновременно к мембранам регулятора и пилота. Импульс выходного давления, подаваемый в надмембранную полость регулятора по трубке, определяет собой поддержание в заданных пределах выходного давления независимо от характера и причин, вызвавших его изменение. Импульс выходного давления, поступающий в надмембранную полость пилота по трубке, меняет давление в ней так, чтобы дополнительно изменить положение регулирующего плунжера и компенсировать влияние изменения входного давления на давление в контролируемой точке, т. е. ввести необходимую поправку на изменение входного давления.

Газ входного давления поступает в пилот из верхней части корпуса регулирующего клапана через фильтр, соединительный патрубок и дополнительную фильтрующую сетку. После дросселирования в пилоте газ по трубке поступает в подмембранное пространство регулирующего клапана через калиброванное отверстие - демпфирующий дроссель. Излишки газа из подмембранного пространства постоянно сбрасываются в газопровод после регулятора по трубку через дроссель.

У меня на котельной :

Ж приема сдачи смены

Ж оперативный

Жрасхода ХВО


Дата добавления: 2019-02-22; просмотров: 167; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!