Гармонические колебания. Математический маятник.



Математическим маятником называют тело небольших размеров, подвешенное на тонкой нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела. В положении равновесия, когда маятник висит по отвесу, сила тяжести mg уравновешивается силой натяжения нити Fупр. При отклонении маятника из положения равновесия на некоторый угол φ появляется касательная составляющая силы тяжести Fτ = –mg sin φ (рис. 2.3.1). Знак «минус» в этой формуле означает, что касательная составляющая направлена в сторону, противоположную отклонению маятника.

Второй закон Ньютона, записанный для проекций векторов ускорения и силы на направление касательной, дает:

Для малых колебаний математического маятника второй закон Ньютона записывается в виде

Таким образом, тангенциальное ускорение aτ маятника пропорционально его смещению x, взятому с обратным знаком. По общему правилу для всех систем, способных совершать свободные гармонические колебания, модуль коэффициента пропорциональности между ускорением и смещением из положения равновесия равен квадрату круговой частоты:

Эта формула выражает собственную частоту малых колебаний математического маятника.

Следовательно,

Гармонические колебания. Физический маятник.

Любое тело, насаженное на горизонтальную ось вращения, способно совершать в поле тяготения свободные колебания и, следовательно, также является маятником. Такой маятник принято называть физическим. Он отличается от математического только распределением масс. В положении устойчивого равновесия центр масс C физического маятника находится ниже оси вращения О на вертикали, проходящей через ось. При отклонении маятника на угол φ возникает момент силы тяжести, стремящийся возвратить маятник в положение равновесия:

M=–(mgsinφ)d.

Здесь d – расстояние между осью вращения и центром масс C.

Знак «минус» в этой формуле, как обычно, означает, что момент сил стремится повернуть маятник в направлении, противоположном его отклонению из положения равновесия. Как и в случае математического маятника, возвращающий момент M пропорционален sin φ. Это означает, что только при малых углах φ, когда sin φ ≈ φ, физический маятник способен совершать свободные гармонические колебания. В случае малых колебаний

M=–mgdφ

и второй закон Ньютона для физического маятника принимает вид

Iε=M=–mgdφ

ε – угловое ускорение маятник

I – момент инерции маятника относительно оси вращения O.

Модуль коэффициента пропорциональности между ускорением и смещением равен квадрату круговой частоты:

Здесь ω0собственная частота малых колебаний физического маятника.

Следовательно,

Более строгий вывод формул для ω0 и T можно сделать, если принять во внимание математическую связь между угловым ускорением и угловым смещением: угловое ускорение ε есть вторая производная углового смещения φ по времени:

Поэтому уравнение, выражающее второй закон Ньютона для физического маятника, можно записать в виде

Это уравнение свободных гармонических колебаний. Коэффициент

 

в этом уравнении имеет смысл квадрата круговой частоты свободных гармонических колебаний физического маятника.

По теореме о параллельном переносе оси вращения (теорема Штейнера) момент инерции I можно выразить через момент инерции IC относительно оси, проходящей через центр масс C маятника и параллельной оси вращения:

 I =IC+md2

Окончательно для круговой частоты ω0 свободных колебаний физического маятника получается выражение:


Дата добавления: 2019-02-22; просмотров: 325; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!