Вынужденные колебания. Период и амплитуда вынужденых колебаний. Частота колебаний. Резонанс, резонансная частота. Семейство резонансных кривых.



+ Билет 14.

 

 При совпадении частоты внешней силы и частоты собственных колебаний тела амплитуда вынужденных колебаний резко возрастает. Такое явление называют механическим резонансом.

Резона́нс— явление резкого возрастания амплитуды вынужденных колебаний.

Увеличение амплитуды — это лишь следствие резонанса, а причина — совпадение внешней частоты с внутренней частотой колебательной системы.

 

Резонансная частота – частота, в которой амплитуда максимальна (немного меньше собственной частоты)

 

График зависимости амплитуды вынужденных колебаний от частоты вынуждающей силы называется резонансной кривой.

В зависимости от коэффициента затухания получаем семейство резонансных кривых, чем коэффициент, меньше тем кривая больше и выше.

 


Билет 16.

Сложение колебаний одного направления. Векторная диаграмма. Биения.

 

Сложение нескольких гармонических колебаний одного направления и одинаковой частоты становится наглядным, если изображать колебания графически в виде векторов на плоскости. Полученная таким способом схема называется векторной диаграммой.

Рассмотрим сложение двух гармонических колебаний одного направления и одинаковой частоты:

Представим оба колебания с помощью векторов A1и А2. Построим по правилам сложения векторов результирующий вектор А, проекция этого вектора на ось x равна сумме проекций складываемых векторов:

Поэтому, вектор A представляет собой резуль­тирующее колебание. Этот вектор вращается с той же угловой скоростью как и векторы А1 и А2, так что сумма x1 и х2 является гармоническим колебанием с такой же частотой, амплитудой и фазой.Используя теорему косинусов получаем, что

               

Представление гармонических колебаний с помощью векторов позволяет заменить сложение функций сложением векторов, что значительно проще.

 

Биения - колебания с периодически меняющейся амплитудой, возникающие в результате наложения двух гармонических колебаний с несколько различными, но близкими частотами.


Билет 17.

Сложение взаимно перпендикулярных колебаний. Связь между угловой скоростью вращательного движения и циклической частотой. Фигуры Лиссажу.

Сложение взаимно перпендикулярных колебаний:

                    

Колебания в двух взаимно перпендикулярных направлениях происходят независимо друг от друга:

Здесь собственные частоты гармонических колебаний равны:

Рассмотрим траекторию движения грузов:

в ходе преобразований получим:

Таким образом, груз будет совершать периодические движения по эллиптической траектории. Направление движения вдоль траектории и ориентация эллипса относительно осей зависят от начальной разности фаз

      

 

Если частоты двух взаимно-перпендикулярных колебаний не совпадают, но являются кратными, то траектории движения представляют собой замкнутые кривые, называемые фигурами Лиссажу. Отметим, что отношение частот колебаний равно отношению чисел точек касания фигуры Лиссажу к сторонам прямоугольника, в который она вписана.


Билет 18.


Дата добавления: 2018-10-26; просмотров: 398; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!