Методы подгонки параметров элементов толстопленочных ГИС



 

     Для изменения параметров элементов ГИС используются различные методы, основанные либо на физическом удалении части материала пленки (изменения геометрических размеров резисторов и конденсаторов), либо на изменении ее физико-химических свойств. Среди них можно выделить метод лазерной подгони, метод высоковольтного импульсного разряда, химический и электрохимический методы.

Самым распространенным методом является лазерная подгонка, суть которой заключается в следующем. Поверхность резистора обрабатывается кратковременными импульсами, излучаемыми лазером, что приводит к испарению части материала резистивного слоя и образованию так называемых «резов» (поперечных, продольных или комбинированных), изображенных на рис. 4.12. Поскольку образование «реза» приводит к уменьшению поперечного сечения резистора, то лазерная подгонка позволяет корректировать сопротивление только в сторону увеличения. В процессе подгонки необходимо постоянно контролировать сопротивление резистора, что осуществляется с помощью специальных зондов, напряжение с которых поступает в управляющий компьютер. Как только сопротивление достигнет номинального значения, воздействие лазера на резистор прекращается. Считается, что поперечный «рез» позволяет осуществлять грубую подгонку, а продольный «рез» – тонкую. Обычно формируют комбинированный «рез», то есть начинают с поперечного «реза», а заканчивают продольным. Аналогичным образом осуществляется подгонка конденсаторов, только в этом случае удаление части поверхности верхней обкладки конденсатора приводит к уменьшению его емкости.

 

     Поскольку процесс подгонки резисторов и конденсаторов односторонний, то для того, чтобы исключить брак, технологический процесс формирования толстопленочных элементов настраивают таким образом, чтобы резисторы имели заведомо заниженные значения сопротивлений (примерно на 20 - 40 %), а конденсаторы – завышенные значения емкости. Возможность корректировать параметры элементов только в одном направлении является серьезным недостатком данного метода подгонки.

     Подгонку резисторов как в сторону увеличения, так и в сторону уменьшения можно осуществить методом высоковольтного разряда, суть которого заключается в ледующем. Импульсное напряжение порядка нескольких киловольт прикладывается к пленке резистора. Подача таких импульсов длительностью 0,1 - 3 с вызывает изменения в структуре пленки. Например, в резисторах на основе RuO2 - Ag первоначальные импульсы увеличивают содержание серебра, что приводит к уменьшению сопротивления. Последующие импульсы вызывают разрыв пленки с образованием микроскопических кратеров, что способствует увеличению сопротивления. Детально механизм уменьшения сопротивления еще окончательно не исследован. Некоторые авторы считают, что это связано со спеканием частиц функциональной фазы, другие полагают, что это вызвано пробоем стеклофазы. Метод позволяет изменять сопротивление резисторов в пределах 2 - 3 %, что недостаточно для его широкого промышленного применения.

     Химический метод подгонки основан на восстановительных или окислительных реакциях, происходящих в материале резистора под воздействием горячей струи кислорода или водорода. Данный метод позволяет корректировать сопротивление резисторов как в сторону увеличения, так и в сторону уменьшения, поскольку восстановительные реакции приводят к увеличению содержания электропроводящего компонента, а окислительные способствуют его уменьшению.

     Использование аналогичных реакций лежит в основе электрохимического метода подгонки. Суть его состоит в том, что на резистор, подгоняемый до номинала, наносится капля электролита, один из электродов вводят в электролит, другой подводят к резистору. В зависимости от полярности прикладываемого к электродам напряжения к резистору направляются либо ионы водорода, либо ионы кислорода. Однако в силу недостаточно хорошей воспроизводимости результатов оба последних метода пока не нашли широкого применения.

 

Контрольные вопросы

1. В чем суть метода термовакуумного напыления тонких пленок?

2. Объясните термодинамику и кинетику процесса испарения вещества. Как зависит скорость испарения от температуры испарителя?

3. Как влияют температура и плотность потока атомов на структуру пленки при ее осаждении на подложке?

4. В чем суть метода катодного распыления?

5. Как образуется газоразрядная плазма и какие условия необходимы для ее образования?

6. Что такое коэффициент распыления и от каких технологических факторов он зависит?

7. В чем суть методов высокочастотного, реактивного и магнетронного распыления?

8. В чем суть толстопленочной технологии ИС? Перечислите основные технологические операции и объясните их назначение.

9. Какие физико-химические процессы протекают при вжигании резистивных серебряно-палладиевых паст?

10. Как осуществляется подгонка параметров толстопленочных резисторов?

 

Физико-химические процессы


Дата добавления: 2018-05-12; просмотров: 1225; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!