Основные технологические операции



 

     Как уже отмечалось, основными технологическими операциями изготовления толстопленочных гибридных микросхем являются: нанесение паст на подложку методом трафаретной печати; сушка паст; вжигание по определенному температурному профилю; подгонка параметров полученных элементов.

Схема установки для трафаретной печати элементов толстопленочных ГИС представлена на рис. 4.10. Цифрами обозначены: 1 – диэлектрическая подложка; 2 – трафарет; 3 – «отпечаток» пасты; 4 – паста; 5 – ракель, с помощью которого паста продавливается через отверстия в трафарете (ракель обычно делают из резины или полиуретана).

После нанесения паст их следует выдержать несколько минут для выравнивания. Затем производится сушка при температуре 120 - 400 °С в течение 20 - 80 мин, в процессе которой испаряется растворитель технологической связки. Для  получения качественной адгезии процесс сушки тщательно контролируется. Чрезмерно быстрая сушка (или сушка при слишком высокой температуре) может вызвать появление микротрещин, пузырьков, вспучиваний и так далее, снижающих временную стабильность элементов. Хорошие результаты дает сушка инфракрасным излучением, поскольку испарение растворителя в этом случае начинается из областей на границе раздела паста – подложка, а не с поверхности пасты (как при обычной сушке в термошкафах).

Следующей операцией является вжигание паст в многозонных печах конвейерного типа в воздушной атмосфере. Печи обеспечивают нужный температурный профиль, который можно условно разбить на четыре участка (рис. 4.11). На первом участке (до 300 - 400 °С) скорость подъема температуры невысокая (около 20 °С/мин). На этом участке происходит выгорание остатков технологической связки. Этот процесс должен идти с умеренной скоростью: не  слишком быстро и не слишком медленно. При быстром протекании процесса выгорание сопровождается разрушением пленки, возникают пузырения, отслаивание пленки от  подложки и так далее. При медленном выгорании в пленке может остаться углерод, входящий в состав органического связующего. Если пленка с остатками углерода попадет во  вторую температурную зону, где начинает плавиться стекло, то могут возникнуть неконтролируемые реакции, ухудшающие качество элементов ГИС.

На втором участке происходит плавление стеклянной фритты и обволакивание расплавленной стеклянной массой частиц функциональной фазы. Скорость подъема температуры здесь достигает 50 - 60 °С/мин. На  третьем участке происходят сложные физико-химические процессы, определяющие основные параметры элементов ГИС. Скорость изменения температуры на этом участке должна выдерживаться с точностью ±2 °С/мин, а  максимальная температура  –  с точностью  ±1 °С. Четвертый участок температурного профиля соответствует охлаждению подложки до комнатной температуры. Скорость снижения температуры должна быть достаточно медленной, чтобы исключить растрескивание пленки вследствие различия температурных коэффициентов расширения пленки и подложки.

Электрофизические параметры толстопленочных элементов (сопротивление, температурный коэффициент сопротивления, временная стабильность и так далее) в значительной степени зависят от качества подложки, вязкости паст, размеров входящих в состав паст частиц, режимов сушки и вжигания, режимов подгонки и многих других факторов. Основную роль здесь играют физико-химические процессы, происходящие в пасте при термическом вжигании. Рассмотрим эти процессы на примере серебряно-палладиевых резистивных паст, в состав которых входят оксид серебра Ag2O, палладий Pd, стеклянная фритта и растворитель.

     На начальной стадии термообработки (при Т < 330 °С) происходит испарение остатков органической связки и диссоциация Ag2O в соответствии с реакцией

2Ag2O ® 4Ag + O2.

С повышением температуры (примерно от 330 °С до 520 °С) начинается окисление палладия:

2Pd + O2 ® 2PdO.

При дальнейшем повышении температуры (приблизительно до 700 °С) происходит образование сплава Pd-Ag в соответствии с реакцией

3PdO +2Ag ® 2Pd×Ag +PdO + O2.

При температурах, превышающих 700 °С начинается разложение оксида палладия:

2PdO ® 2Pd + O2.

     Таким образом, полученный в результате описанных выше процессов резистор состоит из композиции стекла, Pd, PdO и сплава Pd-Ag. Процентное содержание этих компонентов и определяет параметры полученных резисторов, в  частности, сопротивление и температурный коэффициент сопротивления. Палладий и сплав палладия с серебром являются проводниками, их ТКС положителен. Оксид палладия, напротив, является полупроводником р-типа. Величина и знак ТКС оксида палладия зависят от температуры и степени легирования. Обычно ТКС у PdO отрицателен.

     На окисление и восстановление палладия катализирующее воздействие оказывает серебро, снижая, в частности, температуру восстановления палладия до 600 °С. Поэтому при вжигании при температурах в пределах 700 - 800 °С эта система склонна к неконтролируемым окислительно-восстановительным реакциям. Кроме этого, невысока и точность воспроизведения геометрических размеров элементов при трафаретной печати. Как следствие, все это приводит к большому разбросу параметров получаемых резисторов, который может достигать величины порядка 30 % . Необходима индивидуальная подгонка резисторов (и конденсаторов).

 


Дата добавления: 2018-05-12; просмотров: 365; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!