Термовакуумное напыление тонких пленок



 

Сущность метода термовакуумного напыления

 

     Сущность метода термовакуумного напыления можно пояснить с помощью упрощенной схемы установки, представленной на рис. 4.1. Вещество, подлежащее напылению, помещают в устройство нагрева (испаритель) 1, где оно при достаточно высокой температуре интенсивно испаряется. В вакууме, который создается внутри камеры специальными насосами, молекулы испаренного вещества свободно и быстро распространяются в окружающее пространство, достигая, в частности, поверхности подложки 2. Если температура подложки не превышает критического значения, происходит конденсация вещества на подложке, то есть рост пленки. На начальном этапе испарения во избежание загрязнения пленки за счет примесей, адсорбированных поверхностью испаряемого вещества, а также для вывода испарителя на рабочую температуру используется заслонка 4, временно перекрывающая поток вещества на подложку. В зависимости от функционального назначения пленки в процессе осаждения контролируется время напыления, толщина, электрическое сопротивления или какой-либо другой параметр. По достижении заданного значения параметра заслонка вновь перекрывает поток вещества и процесс роста пленки прекращается. Нагрев подложки с помощью нагревателя 3 перед напылением способствует десорбции адсорбированных на ее поверхности атомов, а в процессе осаждения создает условия для улучшения структуры растущей пленки. Непрерывно работающая система откачки поддерживает вакуум порядка 10-4 Па.

     Разогрев испаряемого вещества до температур, при которых оно интенсивно испаряется, осуществляют электронным или лазерным лучом, СВЧ-излучением, с помощью резистивных подогревателей (путем непосредственного пропускания электрического тока через образец из нужного вещества или теплопередачей от нагретой спирали). В целом метод отличается большим разнообразием как по способам разогрева испаряемого вещества, так и по конструкциям испарителей.

Если требуется получить пленку из многокомпонентного вещества, то используют несколько испарителей. Поскольку скорости испарения у различных компонентов разные, то обеспечить воспроизводимость химического состава получаемых многокомпонентных пленок довольно сложно. Поэтому метод термовакуумного напыления используют в основном для чистых металлов.

 

Термодинамика и кинетика процессов испарения

 

     Весь процесс термовакуумного напыления можно разбить на три стадии: испарение атомов вещества, перенос их к подложке и конденсация. Испарение вещества с поверхности имеет место, вообще говоря, при любой температуре, отличной от абсолютного нуля. Если допустить, что процесс испарения молекул (атомов) вещества протекает в камере, стенки которой достаточно сильно нагреты и не конденсируют пар (отражают молекулы), то процесс испарения становится равновесным, то есть число молекул, покидающих поверхность вещества, равно числу молекул, возвращающихся в вещество. Давление пара, соответствующее равновесному состоянию системы, называется давлением насыщенного пара, или его упругостью.

     Скорость испарения молекул Vи определяется их количеством, покидающим единицу поверхности вещества в единицу времени. Для вакуума она определяется уравнением Герца-Кнудсена

 

где ри и рк – давления насыщенного пара при температуре испарения и конденсации соответственно; m – масса молекулы; k – постоянная Больцмана; Т – температура испарения; a - коэффициент испарения (для многих веществ он не сильно отличается от единицы).

 

     Обычно температура испарителя значительно превышает температуру подложки и стенок камеры, поэтому ри >> рк. С учетом этого формулу (4.1) можно привести к виду

где М – молярная масса вещества. Полученное выражение представляет собой уравнение Ленгмюра.

     Практика показывает, что процесс осаждения пленок на подложку происходит с приемлемой для производства скоростью, если давление насыщенного пара примерно равно 1,3 Па. Температура вещества, при которой ри = 1,3 Па, называют условной температурой Тусл. Для некоторых веществ условная температура выше температуры плавления Тпл, для некоторых – ниже. Если Тусл < Тпл, то это вещество можно интенсивно испарять из твердой фазы (возгонкой). В противном случае испарение осуществляют из жидкой фазы.

 

     Для однокомпонентной двухфазной равновесной системы, например системы «твердое вещество - пар» или «жидкость - пар», в соответствии с правилом фаз Гиббса существует только один независимый параметр – температура вещества в испарителе Т, от которой зависит давление насыщенного пара ри. Эта зависимость выражается уравнением Клаузиуса-Клапейрона

где DQ – молярная теплота парообразования; Vm.n, Vm.ж – молярные объемы вещества в парообразной и жидкой фазах соответственно. Так как при испарении Vm.n >> Vm.ж, то молярным объемом жидкой фазы в уравнении (4.2) можно пренебречь. Тогда

 

               

Предполагая, что пар можно считать идеальным газом, запишем уравнение Менделеева-Клапейрона для одного моля пара:

 

где R – универсальная газовая постоянная.

     Выразим из него Vm.n, подставим в выражение (4.3) и разделим переменные. В результате получим

 

 

Интегрируя уравнение (4.4), получим

 

 

где const – постоянная интегрирования.

Из полученного выражения следует, что давление насыщенного пара ри увеличивается с ростом температуры по экспоненциальному закону. Реальная зависимость ln pи = f(T) является более сложной. Ее можно описать формулой

 

где A, B, C, D и E – эмпирические коэффициенты.

     Зависимости давления насыщенного пара от температуры для всех веществ, используемых для напыления тонких пленок, представлены в различных справочниках в форме подробных таблиц или графиков.

 


Дата добавления: 2018-05-12; просмотров: 540; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!