Процессы в кремниевых структурах,



Стимулированные радиационными дефектами

 

Улучшение качества оксидного слоя

 

     Электрические свойства оксидного слоя, сформированного на поверхности кремниевой подложки, в значительной степени зависят от наличия в нем ионов щелочных металлов, которые могут попасть в оксидный слой на этапе фотолитографии при удалении фоторезиста щелочами. Эти ионы способны мигрировать под воздействием электрического поля, что снижает электрическую прочность слоя SiO2. Добавление в газ окислитель хлорсодержащих компонентов позволяет снизить негативное влияние этих ионов. Другим вариантом является обработка оксидного слоя небольшими дозами тяжелых ионов.

     Бомбардировка тяжелыми ионами вызывает в оксидном слое образование структурных радиационных дефектов, действующих как ловушки для ионов щелочных металлов. Ионы натрия или калия, мигрирующие в оксиде кремния, попадают в области с высокой концентрацией радиационных дефектов и закрепляются там. Энергию ионов подбирают из условия их полного торможения в оксидном слое. Дозы облучения составляют величину порядка 1012 - 1013 см-2. Бомбардировка осуществляется ионами инертных газов, а также ионами бора и фосфора.

 

Улучшение качества структур «кремний на сапфире»

 

     Из-за несогласованности кристаллических решеток кремния и сапфира качество эпитакcиального слоя кремния, граничащего с подложкой из Al2O3, значительно хуже, чем в монокристаллическом слитке. В нем повышена концентрация структурных дефектов, что сказывается на подвижности носителей заряда. Для устранения структурных дефектов производят бомбардировку эпитаксиального слоя ионами неактивных примесей, чаще всего ионами кремния. Энергию ионов подбирают так, чтобы максимум разупорядочения структуры приходился на границу раздела Si - Al2O2. При достаточно высокой дозе облучения происходит аморфизация глубинных областей, в то время как поверхностные области эпитакисиального слоя остаются относительно бездефектными. В процессе последующего термического отжига поверхностные области служат затравкой при эпитаксиальной рекристаллизации, совершающейся вглубь слоя вплоть до границы раздела Si - Al2O2. Все это, в конечном итоге, позволяет повысить качество КНС-структур.

 

Управление номиналами резисторов

 

     Резисторы в полупроводниковых микросхемах формируют совместно с другими элементами, например, транзисторами. Структура резистора, выполненного на основе базового слоя биполярного транзистора, представлена на рис. 3.14. Сопротивление резистора определяется размерами области р-типа и ее удельной электропроводностью. Если резистор формируется путем диффузионного легирования, то обеспечить высокую воспроизводимость параметров резистора не представляется возможным. Существующий технологический разброс параметров составляет примерно 10 %. Формирование резистора с помощью ионной имплантации хотя и обеспечивает введение заданного количества примесных атомов, но возникновение структурных радиационных дефектов и, как следствие, необходимость проведения термического отжига также позволяют изготовить резисторы с технологическим разбросом примерно 10 %.

     Получить более точные параметры резистора можно, используя метод двойной ионной имплантации. Для реализации этого метода вначале создается резистивный слой р-типа проводимости, для чего пластина кремния через соответствующую маску облучается ионами бора и затем отжигается. После этого измеряется сопротивление и, если оно отличается от номинального, производится коррекция. Для уменьшения сопротивления достаточно имплантировать дополнительно определенное количество примесных атомов и произвести отжиг.

При необходимости коррекции сопротивления резистора в сторону повышения поступают следующим образом. Через ту же маску имплантируют дополнительные ионы бора, но отжиг не производят. Ионы бора, внедряясь в резистивный слой, образуют в нем кластеры дефектов, действующие как центры захвата свободных носителей. В результате сопротивление слоя возрастает, и номинал резистора достигает требуемого значения.

 

Изоляция элементов ИМС

 

     Дефекты, образующиеся при имплантации, создают глубокие уровни в запрещенной зоне полупроводника, что вызывает сдвиг уровня Ферми к середине запрещенной зоны. В широкозонных материалах, какими являются многие полупроводниковые соединения группы А3В5, это приводит к появлению областей с низкой электропроводностью. Эти области могут быть использованы для изоляции элементов полупроводниковой ИМС друг от друга.

Поверхность пластины в этом случае облучается протонами или ионами инертных газов с высокими энергиями. В качестве защитной маски используются пленки фоторезиста толщиной около 5 мкм или пленки тяжелых металлов, обладающих высокой тормозной способностью. Дозы облучения составляют величину 1014 - 1016 см-2. При облучении, например, арсенида галлия и твердых растворов на его основе протонами с энергией 100 кэВ толщина образующегося изолирующего слоя составляет около 1 мкм.

 


Дата добавления: 2018-05-12; просмотров: 437; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!