Классические представления о природе света



 

Вопрос о том, что такое свет, всегда волновал пытливый ум человека. В XVII - XVIII веках в оптике, как и в других областях естествознания, возобладал корпускулярный подход: свет трактовался как поток частиц (корпускул) [42]. Такой подход был «освящен» непререкаемым авторитетом Ньютона, заложившего основы физической оптики и объяснившего разнообразные оптические явления. Главным аргументом в пользу корпускулярной природы света Ньютон считал прямолинейное распространение световых лучей. Кроме того, считая свет потоком корпускул, легко объяснить законы отражения и преломления. Однако существовал и целый ряд оптических явлений, не укладывающихся в рамки чисто корпускулярной гипотезы.

 К таким явлениям относились прежде всего интерференционные и дифракционные эффекты. Несовместимые с корпускулярным подходом, эти эффекты в то же время легко объяснялись на языке волновых процессов. Чтобы убедиться в этом, вспомним, что волной называют процесс распространения колебаний в среде. Если точечный источник волны колеблется по гармоническому закону, отклоняясь от положения равновесия в соответствии с формулой x (0, t)= a(0) cos wt, где a(0) - амплитуда колебаний источника, то возбужденная этим источником сферическая волна постепенно вовлекает в колебательный процесс все новые и новые участки среды. Находящиеся на разных расстояниях от источника участки будут колебаться с той же частотой, однако их отклонение от положения равновесия в один и тот же момент времени будет различным (или, другими словами, будет различной фаза колебаний). Эту важную особенность волнового процесса можно представить формулой

              x(r, t) = a(r)cos(wt - (2p/l) r),              (2.2.1)

показывающей как колеблются участки среды, находящиеся на расстоянии r от источника (в этой формуле l - длина волны, равная отношению скорости волны v к периоду колебаний источника T).

При наложении волн от двух точечных источников результат сложения колебаний в каждой точке пространства зависит от того, в какой фазе приходят эти колебания от каждого из источников. Так, если эти колебания происходят в противофазе, то результирующее колебание просто отсутствует. Напротив, если колебания, возбужденные в какой-то точке пространства, происходят синфазно, то результирующее колебание усиливается.

Таким образом, вследствие наложения волн от двух или нескольких источников в одних точках пространства колебания усиливаются, в других - ослабляются. Это явление и называется интерференцией волн. В 1801 году английский физик Т. Юнг произвел свой знаменитый опыт и получил на экране чередующиеся светлые и темные интерференционные полосы. Этот опыт существенно ускорил переход на волновую трактовку оптических явлений. Однако решающий вклад в этот переход принадлежит великому французскому оптику О. Френелю, создавшему теорию дифракции света, полностью основанную на волновой концепции. Ознакомившись с этой теорией, другой французский ученый С. Пуассон выдвинул против нее возражение, указав, в частности, что из расчетов Френеля следует «невозможное»: в центре геометрической тени от круглой преграды всегда должно быть светлое пятно. Немедленно поставленный эксперимент подтвердил наличие такого пятна на дифракционной картине от круглого диска, что стало окончательным «приговором» в пользу континуального подхода к вопросу о природе света.

Однако это не означало, что все трудности в оптике преодолены. Ведь если свет это волна, то сразу возникает вопрос: что является средой для распространения таких волн. И этой средой стали считать эфир - особую материальную субстанцию, заполняющую все пространство.

Апофеоз классического естествознания

 

В 1860 - 1865 гг. великий последователь Фарадея, Дж. К. Максвелл показал, что электричество и магнетизм не просто тесно связаны друг с другом, а представляют собой единое электромагнитное поле, в котором могут распространяться волны электромагнитных колебаний, в определенном частотном диапазоне воспринимаемые как свет [42]. Таким образом, казалось бы, все стало на свои места: свет действительно представляет собой волновой процесс, этот волновой процесс есть не что иное, как распространение колебаний электромагнитного поля, а электромагнитное поле, следовательно, и является тем гипотетическим эфиром, природа которого ранее была абсолютно непонятна.

Структура электромагнитного поля с самого начала считалась непрерывной, так что для описания его состояния применяется континуальный подход. В частности, состояние электромагнитного поля в вакууме описывается вектором напряженности электрического поля Е и вектором магнитной индукции В, связанными друг с другом системой уравнений Максвелла, обобщающих известные законы электрических и магнитных явлений (закон Кулона, закон электромагнитной индукции Фарадея, закон Био-Савара-Лапласа и другие). В уравнения Максвелла входят заряды и токи, являющиеся источниками электромагнитного поля, а также величины, характеризующие электрофизические свойства среды (диэлектрическая и магнитная проницаемость, электропроводность и другие). С помощью этих уравнений определяется состояние электромагнитного поля в любой последующий момент времени. Таким образом, теория Максвелла не противоречит концепции детерминизма и относится к динамическим теориям.

На этом фактически закончился классический этап в физике и в естествознании в целом. В соответствии с классическим мировоззрением материя существует в двух формах: вещество (корпускулярный подход) и поле (континуальный подход). Триумфом такого подхода стала классическая электродинамика, созданная Г. А. Лоренцем, которая блестяще описала практически все известные к тому времени электрические и оптические свойства вещества.

 

Вопросы для самопроверки

1. Чем отличаются корпускулярный и континуальный подходы к вопросу о структуре материи?

2. Что такое скалярное и векторное поле и как выглядят их графические “портреты”?

3. В чем отличие концепций дальнодействия и близкодействия?

4. Как происходил переход от корпускулярной к волновой концепции света?

5. Что такое электромагнитное поле и какими уравнениями описываются его свойства?

 


Дата добавления: 2018-05-02; просмотров: 436; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!