ГЛАВА 5: ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ТРЕХФАЗНОГО ПЕРЕМЕННОГО ТОКА



Основные понятия о трехфазных системах и цепях

Трехфазная система переменного тока представляет собой совокупность трех однофазных цепей, в которых действуют синусоидальные ЭДС одинаковой частоты, сдвинутые по фазе относительно друг друга на 1/3 периода Т (120°).

Каждая из электрических цепей, входящих в состав трехфазной системы, называется фазой этой системы. Система считается симметричной (рисунок 5.1), если ЭДС во всех трех фазах имеют одинаковую амплитуду и сдвинуты по фазе на одинаковый угол.

Впервые в мире передача энергии трехфазным током была осуществлена русским ученым М.О. Доливо-Добровольским в 1891 г.

Рисунок 5.1 - Диаграмма ЭДС симметричной трехфазной системы: а) - векторная; б) - синусоидальная

Источником трехфазного переменного тока является обычно синхронный генератор. В зависимости от типа первичного двигателя различают турбогенераторы, гидрогенераторы, дизельгенераторы. Как правило, турбогене­раторы строят на 3000 и 1500 об/мин, гидрогенераторы при больших мощностях  -  на 60 - 125 об/мин и при средних и малых  -  на 125 - 750 об/мин, т. е. они являют­ся тихоходными.

В системах с электрически связанными фазами используют две схемы соединения источников и приемников: звездой и треугольником.

Соединение звездой

Соединение фаз генератора или приемника звездой получается при соединении их концов (или начал) в одну общую точку, которая называется нейтральной (рисунок 5.2). Провод, соединяющий нейтральные точки генератора 0 и приемника 0', называется нейтральным, остальные провода - линейными. ЭДС, напряжения и токи в фазах генератора или приемника называются фазными: Еф, Uф, Iф. Токи в линейных проводах и ЭДС или напряжения между проводами называются соответственно линейными: Ел, Uл, Iл. Положительное направление линейных токов во всех линейных проводах принимается единообразным - от генератора к приемнику или наоборот. Аналогично линейные ЭДС или напряжения считаются положительными, если они направлены от предыдущей фазы к последующей (или все - противоположно). Фазные напряжения приемника считаются положительными, если они направлены от концов фаз (точка 0') к их началам или наоборот (к точке 0').

Рисунок 5.2 - Трехфазная система, соединения звездой

При равномерной нагрузке соотношения между ли­нейными и фазными величинами следующие: линейное напряжение равно фазному, умноженному на  т.е. Uл =  ∙ Uф, а линейный ток равен фазному, т.е. Iл = Iф.

Трехфазная цепь с нейтральным проводом называется четырехпроводной, а без него  -  трехпроводной.

При равномерной нагрузке фазные токи одинаковы по величине и сдвинуты по фазе на 120°, поэтому их сумма равна нулю. Следовательно, равен нулю и ток нейтрального провода. Таким образом, при равномерной нагрузке можно использовать систему без нейтрального провода.

В тех случаях, когда возможна неравномерная нагрузка, схему соединения звездой без нейтрального провода не применяют. Для большей надежности работы нейтрального провода, т. е. для предотвращения перехода от звезды с нейтральным проводом к звезде без нейтрального провода, в нем не устанавливают ни предохранителей, ни выключателей.

Схему «звезда» применяют для соединения приемников в тех случаях, когда их номинальное напряжение Uн меньше линейного напряжения Uл источника питания в √3 раз:

По схеме «звезда» без нейтрального провода включают равномерную нагрузку (электродвигатели, электрические печи, трансформаторы и другие трехфазные устройства), по схеме «звезда» с нейтральным проводом - неравномерную нагрузку (например, осветительную), а также обмотки трансформаторов и генераторов трехфазного тока.

Четырехпроводная система широко используется для электроснабжения смешанных осветительно-силовых нагрузок. Осветительные нагрузки включаются на фазное напряжение, а силовые (электродвигатели) - на линейное.

Пример. К трехфазной сети с линейными напряжениями Uл = 380 В подключена соединенная звездой равномерная нагрузка, каждая фаза которой содержит последовательно включенные сопротивления r = 11 Ом и xL = 6,35 Ом. Определить фазные напряжения и токи, а также коэффициент мощности фаз.

Решение.Фазные напряжения:

 

Общие сопротивления фаз:

Фазные токи:

Коэффициент мощности фаз:

Соединение треугольником

Соединение фаз генератора или приемника треугольником получается при соединении конца каждой фазы с началом следующей (рисунок  5.3).

Питание приемников, соединенных треугольником, осуществляется с помощью трех линейных проводов. Приемники включены непосредственно между линейными проводами. Поэтому для данной схемы справедливо соотношение Uл = Uф, т.е. линейное напряжение равно фазному, а линейный ток при равномерной нагрузке в  раз больше фазного, т.е. Iл = .

Ток любой фазы треугольника (рисунок  5.3) может замыкаться через два линейных провода, минуя две другие фазы. Это обусловливает независимость фаз треугольника нормальную их работу как при равномерной, так и при неравномерной нагрузке. Возможность нормального питания приемников при неравномерной нагрузке с помощью только трех проводов  -  одно из основных достоинств этой схемы по сравнению с соединением звездой. Недостатком схемы является то, что при обрыве одного линейного провода перестают нормально рабо­тать две прилегающие к нему фазы, в то время как при таком же повреждении в соединении звездой с нейтраль­ным проводом не работает только одна фаза.

Рисунок 5.3 -Трехфазная система, соединенная треугольником

Схему соединения треугольником применяют в тех случаях, когда их номинальное напряжение Uн равно линейному напряжению Uл источника питания, т. е. Uн = Uл. По этой схеме могут работать электродвигатели, трансформаторы, электрические печи и другие приемники с равномерной и неравномерной нагрузкой.

Трехфазные приемники приходится часто подключать к источникам с напряжением 220/127 и 380/220 В (числитель - линейное напряжение, знаменатель - фазное). Одни и те же приемники с номинальным напряжением Uн = 220 В в сеть 220/127 В должны быть включены по схеме «треугольник», в сеть 380/220 В - по схеме «звезда». В обоих случаях они находятся под номинальным напряжением и получают расчетную мощность.

Пример.К трехфазной сети с линейными напряжениями (Uл = 380 В) подключена соединенная треугольником равномерная нагрузка, каждая фаза которой имеет сопротивление z = 12,7 Ом. Определить фазные и линейные токи.

Решение.При соединении треугольником:

Фазные токи:

Линейные токи:

Мощность трехфазного тока

Активная мощность, потребляемая приемником от сети трехфазного тока, равна арифметической сумме активных мощностей отдельных фаз:

При равномерной нагрузке мощность, потребляемая каждой фазой:

Реактивная мощность равна алгебраической сумме реактивных мощностей фаз Q = QA + QB + QC,причем реактивная мощность индуктивностей берется со знаком плюс, а емкостей  -  со знаком минус.

Реактивная мощность, потребляемая каждой фазой:

Полная, или кажущаяся, мощность равна геометриче­ской сумме общей активной и реактивной мощностей:

При равномерной нагрузке напряжения, токи и коэффициенты мощности всех фаз одинаковы, поэтому активная мощность трехфазной цепи:

Если приемники энергии соединены звездой:

Следовательно:

При соединении приемников треугольником:

Мощность:

Таким образом, активную мощность трехфазного тока при равномерной нагрузке независимо от способа ее соединения («звезда» или «треугольник») можно определить по формуле:

где U - линейное напряжение цепи, В;

I - линейный ток цепи, А.

В практических расчетах линейные величины напряжения и тока обозначают без индексов «л», т.е. U и I.

Аналогично можно выразить реактивную и полную мощности трехфазного тока:

В таблице 5.1 приведена зависимость величины тока от мощности приемника электроэнергии в трехфазной системе при различных номинальных напряжениях.

Для измерения мощности применяются измерительные приборы, называемые ваттметрами.

Активная энергия в цепи трехфазного тока:

Реактивная энергия:

Для измерения расхода электроэнергии в трехфазных цепях обычно пользуются трехфазными счетчиками.

Пример. К трехфазной линии переменного тока напряжением U = 380/220 В подключены звездой электрические лампы накаливания мощностью 100 Вт по 30 шт. в фазе (нагрузка активная) и трехфазный асинхронный электродвигатель номинальной мощностью Рн = 10 кВт, имеющий cosφ = 0,85; sin φ = 0,53; ηн = 0,88 (нагрузка реактивная) Определить токи в линиях цепи.

Решение. Суммарная мощность ламп накаливания :

Таблица 5.1 - Зависимость величины тока от мощности в трехфазной системе

 

Sн, кВА

127 220 380 500 660 3000
1 2 3 4 5 6 7
1 4,6 2,6 1,5 1,2 0,88 0,19
2 9,1 5,3 3 2,3 1,75 0,38
3 13,7 7,9 4,6 3,5 2,66 0,58
4 18,2 10,5 6,1 4,6 3,5 0,77
5 22,8 13,1 7,6 5,8 4,4 0,96
6 27,3 15,8 9,1 6,9 5,24 1,2
7 31,9 18,4 10,6 8,1 6,15 1,4
8 36,4 21 12,1 9,2 7 1,5
9 41 23,6 13,6 10,4 7,9 1,7
10 45,5 26,3 15,2 11,6 8,9 1,9
15 68,2 39,4 22,8 17,3 13,2 2,9
20 91 52,5 30,4 23,1 17,6 3,8
25 114 65,7 38 28,9 22 4,8
30 137 78,8 45,5 34,7 26,4 5,8
35 159 92 53,3 40,4 30,4 6,7
40 182 105 60,8 46,2 35,5 7,7
45 205 118 68,4 52 39,5 8,7
50 228 131 76 57,8 44 9,6
75 341 197 114 86,8 66 14,5
100 455 263 152 116 84,5 19,3
135 614 355 205 156 118,5 26
180 819 473 274 208 158 34,8
240 1092 630 365 278 217 46,4

Линейный ток осветительной нагрузки (cos φ = 1):

Активная мощность, потребляемая электродвигателем из сети:

Ток, потребляемый электродвигателем:

Активная составляющая тока электродвигателя:

Активная составляющая тока:

Общий активный ток:

Ток в линейных проводах цепи:

Пример. К трехфазной сети напряжением U = 220 В присоединена треугольником активная нагрузка (по 50 ламп на фазу). Мощность лампы Pо = 100 Вт. Определить токи в фазах и линейных проводах.

Решение. Суммарная мощность ламп:

Линейные токи (cosφ = 1):

Фазные токи:

Вращающееся магнитное поле

Вращающееся магнитное поле можно получить с помощью трех катушек (рисунок  5.4), оси которых сдвинуты и пространстве на 120°, если питать их трехфазной симметричной системой токов. Токи, протекающие в катушках, возбуждают переменные магнитные поля, которые пронизывают обмотки в направлении, перпендикулярном их плоскостям. Направления магнитных полей всех трех катушек показаны векторами ВА, ВВ и ВС, сдвинутыми относительно друг друга также на 120°.

Суммарный магнитный поток, создаваемый трехфазной системой переменного тока в симметричной системе обмоток, является величиной постоянной и в любой момент времени равен полуторному значению максимального потока одной фазы, т. е. Ф = 1,5 Фм.

И любой другой момент времени это значение магнитногого потока не изменяется. С течением времени изменяется лишь его направление. Таким образом, во времени происходит непрерывное и равномерное изменение направления магнитного поля, созданного трехфазной обмоткой, т. е. магнитное поле вращается с постоянной скоростью.

Рисунок 5.4 - Получение вращающегося магнитного поля

Направление вращения поля зависит от порядка чередования фаз, к которым подключаются катушки. Если его изменить, например, вторую катушку подключить к первой фазе, а первую - ко второй, направление вращения поля изменится на обратное. Этим широко пользуются на практике для изменения направления вращения двигателей переменного тока.

Вращающееся магнитное поле, образованное тремя катушками (одна пара полюсов), называется двухполюсным. Частота вращения поля определяется частотой переменного тока. При f = 50 Гц поле делает 50 об/с или 3000 об/мин. Увеличивая число катушек и тем самым число пар полюсов, можно замедлять вращение магнитного поля. Так, например, при шести катушках (2 пары полюсов) поле будет совершать 1500 об/мин. Следовательно, частота вращения магнитного поля в минуту обратно пропорциональна числу пар полюсов, т. е.:

где f - частота переменного тока, Гц;

р - число пар полюсов.

Вращающееся магнитное поле лежит в основе работы трехфазных электродвигателей - асинхронных и синхронных, оно возникает также в трехфазных генераторах. На нем базируется работа многих измерительных приборов (фазометров, тахометров и других устройств).

 

КОНТРОЛЬНАЯ РАБОТА №6

«Электрические цепи трехфазного переменного тока»

Задание 1

Указать единицы измерения:

1. Число оборотов вала  
2. Период колебаний Т  
3. Полное сопротивление  
4. Полная мощность  
5. Активная мощность  
6. Реактивная мощность  
7. Реактивная энергия  
8. Активная энергия  

Задание 2

Написать формулу:

1. Линейное напряжение при соединении по схеме «звезда»  
2. Линейные ток при соединении по схеме «звезда»  
3. Линейное напряжение при соединении по схеме «треугольник»
4. Линейные ток при соединении по схеме «треугольник»  
5. Активная мощность, потребляемая приемником от сети трехфазного тока.  
6. Активная мощность, потребляемая фазой  
7. Реактивная мощность потребляемая от сети трехфазного тока  
8. Реактивная мощность, потребляемая фазой
9. Активная мощность трехфазной цепи при соединении в звезду
10. Активная мощность трехфазной цепи при соединении в треугольник
11. Реактивная мощность трехфазного тока
12. Полная мощность трехфазного тока
13. Активная мощность трехфазного тока
14. Реактивная энергия трехфазного тока
15. Ток в трехфазной цепи

Задание 3

Решить задачу:

К трехфазной линии переменного тока напряжением U = 380/220 В подключены звездой электрические лампы накаливания мощностью 90 Вт по 20 шт. в фазе (нагрузка активная) и трехфазный асинхронный электродвигатель номинальной мощностью РН = 7,5 кВт, имеющий cos φ = 0,85; sin φ = 0,53; η Н = 0,88 (нагрузка реактивная) Определить токи в линиях цепи.

 

Задание 4

Решить задачу:

К трехфазной сети напряжением U = 380 В присоединена треугольником осветительная нагрузка (по 50 люминесцентных ламп на фазу). Мощность лампы P0 = 80 Вт, cos φ = 0.95 Определить токи в фазах и линейных проводах.

Задание 5

Решить задачу:

К трехфазной сети с линейными напряжениями (Uл = 380 В подключена соединенная треугольником равномерная нагрузка, каждая фаза которой имеет сопротивление z = 0,7 Ом. Определить фазные и линейные токи.

Задание 6

Изобразить схему подключения трехфазного электродвигателя:


Дата добавления: 2018-04-15; просмотров: 6958; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!