Научная революция конца 16 начала 17 веков



Научная революция включает в себя не только получение принципиально новых представлений об окружающем мире благодаря научным открытиям, но и изменение представления учёных о том, как эти открытия надо делать. Если в Средневековье преобладали отвлечённые логические рассуждения и философские аргументы, то в Новое время ключевым для новой науки стал эмпирический подход. Для нас сейчас он естественен, но признан он был только в XVII веке, а распространился лишь в XVIII веке[1].

Это было связано с тем, что, начиная с Аристотеля знание, полученное опытом, низко ценилось. Человеческие органы чувств считались плохим прибором для его получения — уж очень они обманчивы. Истинным и имеющим всеобщую силу считалось знание, полученное чистой логикой. Основным методом познания была дедукция. Знание же, идущее из наблюдения, считалось частичным, не имеющим всеобщей действительности. Индуктивный метод — заключение об общем по частным наблюдениям — приживался лишь очень постепенно[2].

Теоретическое обоснование новой научной методики принадлежит Фрэнсису Бэкону, обосновавшему в своём «Новом органоне» переход от традиционного дедуктивного подхода (от общего — умозрительного предположения или авторитетного суждения — к частному, то есть к факту) к подходу индуктивному (от частного — эмпирического факта — к общему, то есть к закономерности).

Многие важные фигуры научной революции, однако, разделяли общепринятое в эпоху Возрождения уважение к учениям древних и даже цитировали древних в подтверждение своих теорий. Гелиоцентрическая картина мира была разработана уже в Древней Греции Аристархом Самосским.

Структура научных революций (англ. TheStructureofScientificRevolutions) (1962) — книга Томаса Куна, представляющая собой анализ истории науки. Её публикация стала значительным событием в социологии знаний, ввела в обиход термины парадигма и смена парадигм.

Основная идея книги — научное знание развивается скачкообразно, посредством научных революций. Любой критерий имеет смысл только в рамках определённой парадигмы, исторически сложившейся системы воззрений. Научная революция — это смена научным сообществом объясняющих парадигм.

Моральное самосознание ученого

В отличие от профессиональной, социальная ответственность ученых реализуется во взаимоотношениях науки и общества. Поэтому ее можно характеризовать как внешнюю (иногда говорят — социальную) этику науки.

При этом следует иметь в виду, что в реальной жизни ученых проблемы внутренней и внешней этики науки, профессиональной и социальной ответственности ученых бывают тесно переплетены между собой.

Этические вопросы и этические оценки касались науки в целом, а потому не могли оказывать прямого влияния на деятельность конкретного исследователя, на формирование и направленность его научных интересов.

Именно социальная ответственность ученых явилась тем исходным импульсом, который заставил сначала их, а затем и общественное мнение осознать серьезность ситуации, угрожающей будущему человечества.

Социальная ответственность ученых, как мы видим, оказывается одним из факторов, определяющих тенденции развития науки, отдельных дисциплин и исследовательских направлений.

Онтология образования: школа, личность, среда

 

Стало быть, онтология — это учение о существующем.

В философии образования онтологические основания не монолитны: само существование и роль образования в человеческой жизни, его наличие в семье, школе и обществе никем не оспариваются, но мнения относительно объектов и процессов, которые составляют сущность образования, расходятся довольно резко.

 

Классическая и неклассическая наука

Классическая наука определяется совокупностью конкретных критериев:

Научность признана объективной, т.е. нацеленной на конкретный объект, постигаемый через опыт;

Наука носит опытный характер знаний. Основными методами для получения и подтверждения полученных знаний применяются наблюдение, измерение, эксперимент. Поэтому к научному эксперименту всегда предъявляются высокие требования повторяемости и воспроизводимости в любом месте в любое время без малейших изменений;

Классическая наука должна быть достоверной и иметь общую значимость и универсальность научного познания, т.е. быть интерсубъективной. Соответственно, чем достовернее научное высказывание, тем меньшее количество субъективных привнесений содержится в ней.

История классической науки выделяет три эволюционных этапа развития:

Классический этап – на данном этапе наука характеризуется, прежде всего, принципом интерсубъективности и проникновением субъективных изменений в контекст науки. В первую очередь через процесс познания был внесен принцип дополнительности. Здесь все внимание сосредоточено строго на исследуемом объекте, не вынося его за окружение его деятельности;

Неклассический этап – данный этап характеризуется идеей зависимости, а также связи конкретного объекта со средствами деятельности. Учет полученных в ходе исследования результатов является условием получения в дальнейшем истинного знания о данном объекте;

В конце ХIХ - начале XX в. считалось, что научная картина мира практически построена, и если и предстоит какая-либо работа исследователям, то это уточнение некоторых деталей. Но вдруг последовал целый ряд открытий, которые никак в нее не вписывались.

В 1896 г. французский физик А. Беккерель (1852-1908) открыл явление самопроизвольного излучения урановой соли, природа которого не была понята. В поисках элементов, испускающих подобные "беккерелевы лучи", Пьер Кюри (1859-1906) и Мария Склодовская-Кюри (1867-1934) в 1898 г. открывают полоний и радий, а само явление называют радиоактивностью. В 1897 г. английский физик Дж. Томсон (1856-1940) открывает составную часть атома - электрон, создает первую, но очень недолго просуществовавшую модель атома. В 1900 г. немецкий физик М. Планк (1858-1947) предложил новый (совершенно не отвечающий классическим представлениям) подход: рассматривать энергию электромагнитного излучения величину дискретную, которая может передаваться только отдельными, хотя и очень небольшими, порциями - квантами. На основе этой гениальной догадки ученый не только получил уравнение теплового излучения, но она легла в основу квантовой теории.

Английский физик Э. Резерфорд (1871-1937) экспериментально устанавливает, что атомы имеют ядро, в котором сосредоточена вся их масса, а в 1911 г. создает планетарную модель строения атома, согласно которой электроны движутся вокруг неподвижного ядра и в соответствии с законами классической электродинамики непрерывно излучают электромагнитную энергию.

Датский физик Нильс Бор (1885-1962), исходя из модели Резерфорда и модифицируя ее, введя постулаты (постулаты Бора), утверждающие, что в атомах имеются стационарные орбиты, при движении по которым электроны не излучают энергии, ее излучение происходит только в тех случаях, когда электроны переходят с одной стационарной орбиты на другую, при этом происходит изменение энергии атома, создал квантовую модель атома. Она получила название модели Резерфорда-Бора.

В 1924 г. французский физик Луи де Бройль (1892-1987) выдвинул идею о двойственной, корпускулярно-волновой природе не только электромагнитного излучения, но и других микрочастиц. В 1925 г. швейцарский физик-теоретик В. Паули (1900-1958) сформулировал принцип запрета: ни в атоме, ни в молекуле не может быть двух электронов, находящихся в одинаковом состоянии.

В 1926 г. австрийский физик-теоретик Э. Шредингер (1887-1961) вывел основное уравнение волновой механики, а в 1927 г. немецкий физик В. Гейзенберг (1901-1976) - принцип неопределенности, утверждавший: значения координат и импульсов микрочастиц не могут быть названы одновременно и с высокой степенью точности.

В 1929 г. английский физик П. Дирак (1902-1984) заложил основы квантовой электродинамики и квантовой теории гравитации, разработал релятивистскую теорию движения электрона, на основе которой предсказал (1931) существование позитрона - первой античастицы. Античастицами назвали частицы, подобные своему двойнику, но отличающиеся от него электрическим зарядом, магнитным моментом и др. В 1932 г. американский физик К. Андерсон (р. 1905) открыл позитрон в космических лучах.

В 1934 г. французские физики Ирен (1897-1956) и ФридерикЖолио-Кюри (1900-1958) открыли искусственную радиоактивность, а в 1932 г. английский физик Дж. Чедвик (1891- 1974) - нейтрон. Создание ускорителей заряженных частиц способствовало развитию ядерной физики, была выявлена неэлементарность элементарных частиц. Но поистине революционный переворот в физической картине мира совершил великий физик-теоретик А. Эйнштейн (1879-1955), создавший специальную (1905) и общую (1916) теорию относительности.

Как мы помним из предыдущего раздела, в механике Ньютона существуют две абсолютные величины - пространство и время. Пространство неизменно и не связано с материей. Время - абсолютно и никак не связано ни с пространством, ни с материей. Эйнштейн отвергает эти положения, считая, что пространство и время органически связаны с материей и между собой. Тем самым задачей теории относительности становится определение законов четырехмерного пространства, где четвертая координата - время. Эйнштейн, приступая к разработке своей теории, принял в качестве исходных два положения: скорость света в вакууме неизменна и одинакова во всех системах, движущихся прямолинейно и равномерно друг относительно друга, и для всех инерциальных систем все законы природы одинаковы, а понятие абсолютной скорости теряет значение, так как нет возможности ее обнаружить.

Если в классической науке универсальным способом задания объектов теории были операции абстракции и непосредственной генерализации наличного эмпирического материала, то в неклассической введение объектов осуществляется на пути математизации, которая выступает основным индикатором идей в науке, приводящих к созданию новых ее разделов и теорий..

Переход от классической науки к неклассической характеризует та революционная ситуация, которая заключается во вхождении субъекта познания в "тело" знания в качестве его необходимого компонента. Изменяется понимание предмета знания: им стала теперь не реальность "в чистом виде", как она фиксируется живым созерцанием, а некоторый ее срез, заданный через призму принятых теоретических и операционных средств и способов ее освоения субъектом. Поскольку о многих характеристиках объекта невозможно говорить без учета средств их выявления, постольку порождается специфический объект науки, за пределами которого нет смысла искать подлинный его прототип. Выявление относительности объекта к научно-исследовательской деятельности повлекло за собой то, что наука стала ориентироваться не на изучение вещей как неизменных, а на изучение тех условий, попадая в которые они ведут себя тем или иным образом,

Научный факт перестал быть проверяющим.

Концепция монокракторного эксперимента заменилась полифакторной: отказ от изоляции предмета от окружающего воздействия якобы для "чистоты рассмотрения", признание зависимости определенности свойств предмета от динамичности и комплексности его функционирования в познавательной ситуации, динамизация представлений о сущности объекта.

В 1922 г. отечественный математик и геофизик А. А. Фридман (1888-1925) нашел решение уравнений общей теории относительности для замкнутой нестационарной расширяющейся Вселенной, ставшее математическим фундаментом большинства современных космогонических теорий.

В 1963 г. открыты квазары - астрономические тела, находящиеся вне пределов Галактики. В 1965 г. американские астрономы А. Пензиас (р. 1933) и Р. Вильсон (р. 1936) обнаружили фоновое радиоизлучение. Как метко назвал его известный астроном и астрофизик И. С. Шкловский (1916-1985) - реликтовое излучение, не возникающее во Вселенной в настоящее время.

В 1903 г. русским ученым, большую часть своей жизни проработавшим учителем физики и математики, К. Э. Циолковским (1857-1935) в работе "Исследование мировых пространств реактивные приборами" были заложены начала теории космических полетов.

Характерное для классического этапа стремление к абсолютизации методов естествознания, выразившееся в попытках применения их в социально-гуманитарном познании, все больше и больше выявляло свою ограниченность и односторонность. Наметилась тенденция формирования новой исследовательской парадигмы, в основании которой лежит представление об особом статусе социально-гуманитарных наук.

Как реакция на кризис механистического естествознания и как оппозиция классическому рационализму в конце XIX в. возникает направление, представленное В. Дильтеем, Ф. Ницше, Г. Зиммелем, А. Бергсоном, О. Шпенглером и др., - "философия жизни". Здесь жизнь понимается как первичная реальность, целостный органический процесс, для познания которой неприемлемы методы научного познания, а возможны лишь внерациональные способы - интуиция, понимание, вживание, вчувствование и др.

Предметом социального познания для Вебера является "культурно-значимая индивидуальная действительность". Социальные науки стремятся понять ее генетически, конкретно-исторически, не только какова она сегодня, но и почему она сложилась такой, а не иной. В этих науках выявляются закономерно повторяемые причинные связи, но с акцентом на индивидуальное, единичное, культурно-значимое. В них преобладает качественный аспект исследования над количественным, устанавливаются вероятностные законы, исходя из которых объясняются индивидуальные события. Цель социальных наук - познание жизненных явлений в их культурном значении. Система ценностей ученого имеет регулятивный характер, определяя выбор им предмета исследования, применяемых методов, способов образования понятий.

Начиная с Вебера намечается тенденция на сближение естественных и гуманитарных наук, что является характерной чертой постнеклассического развития науки.


Дата добавления: 2018-04-15; просмотров: 934; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!