Дается краткая характеристика каждого издания с рекомендациями по использованию. 10 страница



в) Определение размеров магнита по требуемой ин­дукции в рабочем зазоре. Эта задача является еще более трудной, чем определение потока при известных разме­рах. При выборе размеров магнитной цепи обычно стремятся к тому, чтобы индукция В0и напряженность Н0в нейтральном сечении соответствовали максимальному значению произведения Н0В0.При этом объем магнита будет минимальным. Даются следую­щие рекомендации по выбору материалов. Если требу­ется при больших зазорах получить большое значение индукции, то наиболее подходящим материалом является магнико. Если при большом зазоре необходимо создать небольшие индукции, то можно рекомендовать альниси. При малых рабочих зазорах и большом значении индук­ции целесообразно применение альни.

Сечение магнита выбирается из следующих сообра­жений. Индукция в нейтральном сечении выбирается равной В0.Тогда поток в нейтральном сечении

,                                     (5.43)

откуда сечение магнита

.                                             (5.44)

Величины индукции в рабочем зазоре Вр и площадь полюса являются заданными величинами. Наиболее трудным является определение значения коэффициента рассеяния. Величина его зависит от конструкции и индукции в сердечнике. Если сечение магнита получилось большим, то применяют не­сколько магнитов, включенных параллельно. Длина маг­нита определяется из условия создания необходимой н.с. в рабочем зазоре при напряженности в теле магнита Н0:

,                                      (5.45)

где δр – величина рабочего зазора.

При больших рабочих зазорах рекомендуется соеди­нять несколько магнитов последовательно.

После выбора основных размеров и конструирования магнита проводится поверочный расчет по методике, опи­санной ранее.

г) Стабилизация характеристик магнита. В процессе работы магнита наблюдается уменьшение потока в ра­бочем зазоре системы – старение магнита. Различают структурное, механическое и магнитное старение.

Структурное старение наступает вследствие того, что после закалки материала в нем возникают внутренние напряжения, материал приобретает неоднородную струк­туру. В процессе работы материал становится более од­нородным, внутренние напряжения исчезают. При этом остаточная индукция Вт и коэрцитивная сила Нс умень­шаются. Для борьбы со структурным старением мате­риал подвергается термообработке в виде отпуска. При этом внутренние напряжения в материале исчезают. Его характеристики становятся более стабильными. Алюминиево-никелевые сплавы (альни и др.) не требуют струк­турной стабилизации.

Механическое старение наступает при ударах и ви­брациях магнита. Для того чтобы сделать магнит нечув­ствительным к механическим воздействиям, его подвер­гают искусственному старению. Образцы магнита перед установкой в аппарат подвергаются таким ударам и ви­брации, которые имеют место в эксплуатации.

Магнитное старение – изменение свойств материала под действием внешних магнитных полей. Положитель­ное внешнее поле увеличивает индукцию по прямой воз врата, а отрицательное снижает ее по кривой размагни­чивания. Для того чтобы сделать магнит более стабиль­ным, его подвергают действию размагничивающего поля, после чего магнит работает на прямой возврата. Из-за меньшей крутизны прямой возврата влияние внешних полей уменьшается. При расчете магнитных систем с по­стоянными магнитами необходимо учитывать, что в про­цессе стабилизации магнитный поток уменьшается на 10-15%.

Лекция №6

Электродинамические усилия (ЭДУ), методы расчета.
Электродинамическая устойчивость.
Нагрев электроаппаратов.
Нормы нагрева, термическая устойчивость

ЭЛЕКТРОДИНАМИЧЕСКИЕ УСИЛИЯ
В ЭЛЕМЕНТАХ АППАРАТОВ

При коротком замыкании в сети через токоведущую часть ап­парата могут протекать токи, в десятки раз превышающие номи­нальные. Эти токи, взаимодействуя с магнитным полем, создают электродинамические усилия (э.д.у.), которые стремятся деформировать проводники и изоляторы, на которых они крепятся. В некоторых случаях величина э.д.у. может достигать десятков тонн, при этом возможно даже разрушение аппарата.

Для определения э.д.у. используются два метода.

В первом методе сила рассматривается как резуль­тат взаимодействия проводника с током и магнитным полем. Если элементарный проводник dl с током i находится в магнитном поле с индукцией , создаваемой другими проводниками, то сила , действующая на этот элемент:

,                           (6.1)

где угол между векторами элемента dl и индукции В.

За направление dl принимается направление тока в этом элементе.

Направление индукции, создаваемой проводником, легко найти с помощью правила буравчика. Если винт буравчика движется вдоль тока в проводнике, то направление вращения рукоятки совпа­дает с направлением магнитной силовой линии, т.е. с вектором индукции.

Направление силы можно определить по правилу левой руки. Для этого левую руку располагают так, чтобы вектор индукции пронизывал ладонь, а направление тока в проводнике совпадало с четырьмя вытянутыми пальцами. Тогда направление силы будет указывать большой палец (рис. 6.1).

Правило буравчика можно использовать и для определения направления результирующего вектора следовательно, и направления силы.

Если рукоятку штопора вращать от вектора  к вектору  по кратчайшему расстоянию, то направление движения винта што­пора совпадает с направлением силы, действующей на элемент с током .

 

Рис. 6.1. Правило левой руки

 

Для определения полной силы, действующей на проводник длиной l, необходимо просуммировать силы, действующие на все его элементы:

.                                (6.2)

В случае любого расположения про­водников в одной плоскости  уравнение упрощается:

.                                      (6.3)

 Описанный метод рекомендуется при­менять тогда, когда можно аналитически найти индукцию в любой точке провод­ника, для которого необходимо опреде­лить силу.

Второй метод определения э.д.у. основан на использовании энергетического баланса системы проводников с током. Если пренебречь электростатической энергией системы и при­нять, что при деформации токоведущих контуров или их переме­щении под действием э.д.у. величина тока во всех контурах оста­ется неизменной, то силу можно найти по уравнению

,                                          (6.4)

где A – электромагнитная энергия;

x – возможное перемещение в направлении действия силы F .

Таким образом, сила равна частной производной от электро­магнитной энергии данной системы по координате, в направлении которой действует сила.

Электромагнитная энергия системы обусловлена как энергией магнитного поля каждого изолированного контура, так и энер­гией, определяемой магнитной связью между контурами.

Для системы трех взаимосвязанных контуров электромагнит­ная энергия

,       (6.5)

здесь индуктивности контуров;

токи в контурах;

 взаимоиндуктивности между контурами.

Первые три члена уравнения определяют энергию независимых контуров, вторые три члена характеризуют энергию, обусловлен­ную магнитной связью.

Уравнение дает возможность рассчитать как силы, дей­ствующие в изолированном контуре, так и силу взаимодействия этого контура со всеми остальными.

При коротком замыкании величина тока в цепи не зависит от незначительных деформаций токоведущих контуров или от изме­нения расстояния между ними, возникающих под действием э.д.у. Поэтому при нахождении сил с помощью уравнения можно считать, что величина тока не меняется, а сила возникает в резуль­тате изменения индуктивности или взаимоиндуктивности.

Для определения сил внутри одного контура пользуются урав­нением

,                                    (6.6)

где х – координата, в направлении которой действует сила F .

При расчете силы, действующей между контурами, считаем, что энергия меняется только в результате возможного изменения взаимного расположения контуров. При этом энергия, обусловленная собствен­ной индуктивностью, считается неиз­менной:

.                              (6.7)

Энергетическим методом очень удобно пользоваться тогда, когда известна ана­литическая зависимость индуктивности или взаимоиндуктивности от геометри­ческих параметров.

Этот метод позволяет легко найти на­правление э.д.у. Из уравнения (6.4) следует, что положительному направлению силы F соответствует возрастание энергии системы , т.е. деформация контура или его перемещение происходит под действием силы таким образом, чтобы электромагнитная энергия системы воз­растала.

Электромагнитная энергия одного контура

,                         (6.8)

где потокосцепление;

 магнитный поток;

число витков в контуре.

Сила, действующая в контуре, будет направлена таким обра­зом, чтобы индуктивность, потокосцепление и поток при деформа­ции контура под действием этой силы возрастали.

Возьмем для примера круговой виток (рис. 6.2).

Если , то индуктивность витка достаточно точно выражается уравнением

При протекании тока возникает сила, стремящаяся увеличить радиус витка, поскольку с ростом R растет индуктивность L,а следовательно, увеличивается и электромагнитная энергия систе­мы:

.                                      (6.9)

С ростом радиуса возрастает потокосцепление данного контура при условии, что ток в цепи не меняется.

 

Рис. 6.2. Силы в витке, обтекаемом током

ЭЛЕКТРОДИНАМИЧЕСКИЕ СИЛЫ,
ВОЗНИКАЮЩИЕ ПРИ ИЗМЕНЕНИИ СЕЧЕНИЯ ПРОВОДНИКА

При протекании тока по цилиндрическому проводнику на от­дельные нити тока действуют э.д.у., стремящиеся переместить эту нить к центру проводника. Поскольку все линии тока верти­кальны, а индукция в любой точке проводника направлена по ка­сательной, то сила, действующая на элементарные нити, направ­лена по радиусу и не имеет осевой составляющей.

При изменении сечения проводника линии тока искривляются и, кроме поперечной сжимающей силы, возникает продольная, стре­мящаяся разорвать место перехода вдоль оси проводника. Как видно из рис. 6.3, сила, возникающая в месте перехода, направ­лена в сторону большего сечения.

 

Рис. 6.3. Электродинамические силы, действующие в месте изменения

поперечного сечения проводника

Формула для расчета этих сил имеет следующий вид:

.                                    (6.10)

Следует отметить, что эта формула справедлива для любого сим­метричного перехода от сечения с радиусом rк к сечению с радиу­сом rн. Так, в случае многократного конуса

,                                      (6.11)

где  радиус конечного сечения;

 радиус начального сечения.

Плавный переход от одного сечения к другому можно рассматри­вать как переход, образованный большим числом конусных перехо­дов.

Таким образом, электродинамическая сила, возникающая при изменении сечения, зависит только от отношения конечного и началь­ного радиусов и не зависит от формы перехода. Этот вывод справед­лив для равномерного распределения тока по сечению проводника.

Известно, что в электрическом контакте при переходе тока из одного контакта в другой происходит искривление линий тока, аналогичное показанному на рис. 6.3. Для одноточечного контакта касание контактов происходит по площадке смятия. Если положить, что эта площадка находится в цент­ре цилиндрических проводников, то сила, действующая на каждый кон­такт, может быть рассчитана по формуле

,                                      (6.12)

где радиус цилиндрического контакта;

радиус круглой площадки касания.

При номинальном токе эта отбрасывающая сила ничтожна. При коротком замыкании в одноточечном контакте отбрасывающая сила может достигать сотен ньютонов. Для того чтобы контакт был динамически устойчив, сила нажа­тия должна быть больше силы отброса.

В реальных контактах, кроме силы отброса, возникающей из-за изменения сечения проводника, появляется дополнительное э.д.у. за счет взаимодействий, создаваемых токоведущим контуром.

 СИЛЫ ВТЯГИВАНИЯ ДУГИ (ПРОВОДНИКА) В СТАЛЬНУЮ РЕШЕТКУ

В дугогасительных камерах аппаратов высокого и низкого напряжений применяется решетка из набора ферромагнитных пла­стин с пазами.

Электрическая дуга, возникающая между контактами аппа­рата, является своеобразным проводником тока. Взаимодействие этого проводника с решеткой создает электромагнитную силу, двигающую ду­гу. Наиболее широко распространены решетки из стальных пластин с клино­видными пазами.

Рассмотрим силу, действующую на проводник (дугу), симметрично расположенный в пазу прямоугольного сечения (рис. 6.4).

При расчете примем сле­дующие упрощения: магнитное сопро­тивление стали равно нулю; потоком рассеяния, выходящим с торца решетки пренебрегаем; ток течет по геометрической ОСИ проводника.

В данном случае для расчета силы удобно воспользоваться энергетическим методом. В данном случае сила, действующая на проводник:

.                                            (6.13)

Индуктивность системы L можно выразить через поток

.                                 (6.14)

Поскольку , тогда

.                                          (6.15)

Поток, связанный с проводником,

,                                    (6.16)

где ;

 l – активная длина решетки;

 x – расстояние от проводника до начала паза;

 ширина паза.

Подставляя (6.16) в (6.15), получим

                                          (6.17)

При сделанных допущениях сила, действующая на проводник, не зависит от положения проводника в пазу.

В дугогасительных устройствах низкого напряжения дуга, втягиваясь в решетку, пересекает ее и останавливается в точке а, в которой сила, действующая на дугу, должна быть равна нулю.

Это может быть при , т.е. дуга остановится в точке, где поток достигает максимального значения. Поскольку , то эта точка также соответствует максимуму электромагнитной энергии. По мере движения дуги вверх проводимость нижней части магнитной цепи растет линейно с х. В точке а об­щая проводимость цепи будет максимальна. Если дуга пройдет выше нее, то поток начнет снова убывать и возникнет сила, стремящаяся вер­нуть дугу опять в точку а.

 

Рис. 6.4. К расчету сил, действующих на проводник,


Дата добавления: 2021-04-24; просмотров: 67; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!