Дается краткая характеристика каждого издания с рекомендациями по использованию. 14 страница



Рекомендуемые давления одной шины на другую (104 Па) при болтовом соединении приведены ниже.

Материалы соединения:

Медь луженая                                     500-1000;

Медь, латунь, бронза нелуженые    600-1200;

Алюминий                                           2500.

Момент при затяжке болтов контролируется специаль­ным тарированным моментным ключом. Болтовые соедине­ния могут оказаться недостаточно надежными, особенно при алюминиевых контактах. Поэтому в настоящее время алюминиевые токоведущие детали соединяются с помощью холодной или горячей (термитной) сварки и представляют после этого неразборный контакт.

В болтовом шинном соединении при КЗ токоведущий проводник нагревается до температуры 200 ÷ 300 °С.

Стягивающие стальные болты нагреваются в основном за счет теплопроводности, так как ток через болты практи­чески не проходит. Температура болтов обычно не превос­ходит 20% температуры шин. Температурный коэффици­ент расширения у меди и алюминия значительно выше, чем у стали, поэтому шины, увеличиваясь по толщине боль­ше, чем удлиняются болты, растягивают их. При этом де­формация болтов может перейти за пределы упругости. Тогда после отключения цепи и остывания контакта из-за вытягивания болтов нажатие в контактах уменьшится, что приведет к увеличению сопротивления, сильному нагреву и последующему разрушению.

Для того чтобы избежать пластической деформации шин, ставятся соответствующие шайбы. Вследствие малой прочности алюминиевых шин может произойти пластиче­ская их деформация, что приведет к порче контакта. По­этому для стабильности алюминиевого контакта необходи­мо либо производить предварительный обжим, уплотнение шин, либо ставить под гайки пружинящие шайбы или спе­циальные пружины, которые ограничивают деформации элементов контактов.

б) Подвижные неразмыкающиеся контактные соединения. Такие соединения используются либо для передачи тока с подвижного контакта на неподвижный, либо при небольшом перемещении неподвижного контакта под дейст­вием подвижного.

Наиболее простым соединением такого типа является гибкая связь (рис. 7.3). Неподвижный контакт 1 крепится к каркасу аппарата на изоляционной подкладке. Подвиж­ный контакт 2 вращается относительно точки 0,располо­женной на контактном рычаге 4. Этот рычаг изолирован от вала 5, на который действует электромагнит контактора. Гибкая связь 6 соединяет подвижный контакт 2 с выводом аппарата. Контактное нажатие создается пружиной 3. Для получения необходимой эластичности гибкая связь изго­товляется из медной ленты толщиной 0,1·10-3 м и менее или из многожильного жгута, сплетенного из медных жил (0,1·10-3 м и менее). При наличии резких перегибов гибкая связь быстро разрушается.

При больших ходах подвижных контактов длина гибкой связи получается значительной, а ее надежность уменьша­ется. Поэтому она применяется при перемещениях подвиж­ного элемента не более 0,25 м.

При больших ходах и больших номинальных токах при­меняются контактные соединения в виде скользящих и ро­ликовых токосъемов. Принцип действия токосъема ясен из рис. 7.4 и 7.5. Подвижный контакт 1 скользящего то­косъема (см. рис. 7.4) выполнен в виде стержня круглого се­чения. Цилиндрическая обойма 2 соединяется с неподвижным выводом аппарата. Соединение контакта 1 и обоймы 2 осуществляется пальцами (ламелями) 3.Контактное на­жатие создается пружинами 4.Подвижный контакт имеет возможность перемещаться поступательно. Неподвижный контакт имеет поверхность касания в виде плоскости, по­движный – в виде цилиндрической поверхности. Контакти­рование осуществляется по линии, отчего контакт называ­ется линейным.

Недостатком скользящего токосъема является большая сила трения, которая требует значительной мощности при­водного механизма. Сила трения уменьшается при ролико­вом контакте (рис. 7.5). Подвижный контакт 1 роликового токосъема (см. рис. 7.5) выполнен в виде стержня круглого сечения и имеет поступательное движение. Токосъемные стержни 2 также имеют круглое сечение и соединены с вы­водом аппарата. Соединение стержня 1 и стержней 2 осу­ществляется с помощью конусных роликов 3,которые ка­тятся по поверхности стержней 1 и 2. Контактное нажатие создается пружинами 4.

Число роликов зависит от номинального тока и тока КЗ. Этот контакт для своего перемещения требует небольших усилий и широко применяется в современной аппаратуре высокого напряжения.

 

 

Рис. 7.3. Передача тока с подвижного контакта на вывод аппарата
с помощью гибкой связи

в) Разрывные контакты. Контакты многих аппаратов разрывают цепь с током, большим, чем минимальный ток дугообразования. Возникающая электрическая дуга приводит к быстрому износу контактов. Для надежного гашения дуги, образующейся при отклю­чении, необходимо определенное расстояние между непо­движным и подвижным контактами, которое выбирается с запасом. Расстояние между неподвижным и подвижным контактами в отключенном состоянии аппарата называется зазором контактов (рис. 7.6, 7.7). Конструкция разрывных контактов определяется значениями номинального то­ка, номинального напряжения, тока КЗ, режимом работы, назначением аппарата и рассмотрена в разделах, посвя­щенных устройству различных аппаратов. Здесь же рас­смотрим только некоторые общие вопросы.

Рис. 7.4. Скользящий токосъемный розеточный контакт

 

 

Рис. 7.5. Роликовый токосъемный контакт

 

Число площадок касания и стабильность переходного сопротивления зависят от конструкции крепления подвиж­ного и неподвижного контактов. Подвижные контакты, имеющие возможность устанавливаться в положение с мак­симальным числом контактных площадок, называются самоустанавливающимися. Контактный узел с самоустанав­ливающимся контактом представлен на рис. 7.6. Неподвижные кон­такты 1 и подвижный мостиковый контакт 2 в месте каса­ния имеют сферические (или цилиндрические) напайки 3, выполненные из серебра или металлокерамики. Контактное нажатие создается пружиной 4. После касания контактов скоба 5, связанная с приводом аппарата, продолжает свое движение вверх на величину хода, равную провалу δ. При­менительно к конструкциям, показанным на рис. 7.6 и 7.7, провалом называется расстояние, на которое переместится подвижный контакт, если убрать неподвижный.

Рис. 7.6. Контактный узел с само­устанавливающимся контактом

 

На рис. 7.7 показана работа контактной системы, ши­роко применяемой в контакторах с медными контактами.

Для наглядности точки начального и конечного каса­ния обозначены буквами а и b . При включении контактный рычаг 4 вращается электромагнитом вокруг центра О2, а точка О1вращения контактной скобы 3 перемещается по радиусу О2О1.

Касание пальцевых контактов 1 и 2 происходит в точ­ках а (рис. 7.7, б). При дальнейшем перемещении Ох точ­ка касания переходит в точку b (рис. 7.7, в). При этом происходит перекатывание контакта 2 по контакту 1 с не­большим проскальзыванием, за счет чего пленка оксида на них стирается.

При включении контактов, отключавших ду­гу, из-за шероховатости поверхности касания появляется дополнительная вибрация контактов. Для уменьшения виб­рации проскальзывание должно быть небольшим. При от­ключении дуга загорается между точками а-а, что пре­дохраняет от оплавления точки b-b, в которых контакты касаются уже во включенном положении. Таким образом, контакт разделяется на две части: в одной происходит га­шение дуги, в другой ток проводится длительно. Поскольку для контактов по рис. 7.7 непосредственный контроль про­вала затруднен, о нем судят по зазору δ' между рычагом 4 и контактной скобой 3.Контактное нажатие создается пружиной 5.

Рис. 7.7. Контактный узел с перекатыванием подвижного кон­такта

 

Во всех без исключения аппаратах имеется провал кон­тактов, который обеспечивает их необходимое нажатие. Вследствие обгорания и износа контактов в эксплуатации провал уменьшается, что приводит к уменьшению контакт­ного нажатия и росту переходного сопротивления. Поэтому при эксплуатации провал контактов должен контролиро­ваться и находиться в пределах, требуемых заводом-изго­товителем. Особенно это относится к аппаратам, работаю­щим в режиме частых включений и отключений (контак­торы), где износ контактов интенсивен. Допустимое уменьшение провала обычно составляет 50% начального значения.

В торцевом мостиковом контакте (см. рис. 7.6) провал обычно составляет 3-5 мм. В мощных выключателях высо­кого напряжения он увеличивается до 8-10 мм.

В высоковольтных масляных выключателях широко применяется розеточная система (рис. 7.8). Неподвижный контакт состоит из пальцев (ламелей) 1, расположенных по окружности. Для уменьшения обгорания концы ламелей снабжены металлокерамическими наконечниками 2.Контактное нажатие создается пружинами 3.Ламели с помощью гибких связей 5 соединяются с медным цоколем 4.Параллельное соединение шести ламелей снижает переход­ное сопротивление контакта и облегчает работу контакта при токах КЗ, так как через ламель протекает примерно 1/6 полного тока контакта. Контактное нажатие обратно про­порционально квадрату числа ламелей. Подвижный кон­такт выполнен в виде стержня круглого сечения, движуще­гося поступательно. Конец стержня снабжен металлокерамическим наконечником.

Для главных контактов применяется щеточная система (рис. 7.9). Неподвижные контакты 1 выполняются в виде массивных медных призм, часто покрываемых серебром. Подвижные контакты выполнены в виде пакета эластич­ных медных пластин 2.Большое количество пластин создает многоточечный контакт с малым переходным сопротив­лением. При нажатии на подвижный контакт происходит деформация пластин, скольжение линии касания по по­верхности неподвижного контакта и разрушение пленки оксидов.

Широкое применение получили пальцевые самоустанав­ливающиеся контакты (рис. 7.10). Неподвижным контак­том являются пальцы (ламели) 1, выполняемые из меди. Пальцы крепятся к выводу 2 гибкими связями 3. Нажатие контактов создается плоскими пружинами 4. Для получе­ния наибольшего числа площадок касания пружина 4 действует на контакт 1 через сферическую по­верхность заклепки 5 (самоустанав­ливающийся контакт).

Если не имеется возможности подвижному контакту самоустанав­ливаться, то такой контакт называ­ется несамоустанавливающимся (пружина 4 жестко соединена с кон­тактом 1). Подвижный контакт вы­полнен в виде латунной призмы 6.

 

Рис. 7.8. Неподвижный розеточный контакт

 

 

 Рис. 7.9. Щеточные контакты

 

На рис. 7.11 показана двухсту­пенчатая контактная система с глав­ными 1-1 и дугогасительными 2-2' контактами. Главные контакты выполняются из меди, а поверхно­сти их соприкосновения – из серебра, нанесенного электролитически (слой 20 мкм), или в виде припаянных пла­стин. Дугогасительные контакты вы­полняются из меди и имеют наконечники из дугостойкого материала – вольфрама или металлокерамики.

 

Рис. 7.10. Пальцевый самоустанавливающийся контакт

 

Ввиду того, что переходное сопротивление цепи главных контактов значительно меньше, чем дугогасительных, через них проходит 70 ÷ 80% длительного тока. При отключении вначале расходятся главные контакты и весь ток цепи за­мыкается по дугогасительным контактам.

Дугогасительные контакты 2-2' расходятся в тот момент, когда расстояние между главными контактами достаточно, чтобы выдержать наибольшее напряжение, возникающее в процессе гашения дуги на ду­гогасительных контактах.

 

Рис. 7.11. Двухступенчатая контактная система

 

Необходимо отметить, что при отключении больших токов на глав­ных контактах может возникнуть дуга. Дело в том, что после размыкания главных контактов весь ток цепи начинает проходить через дугогасительную систему и на главных контактах появляется напряже­ние. Допустим, что дугогасительная система имеет сопротивление  и индуктивность , а скорость нарастания тока в этой цепи . Тогда напряжение на главных контактах может оказаться достаточным для пробоя промежутка между ними. Для уменьшения обгорания главных контактов необ­ходимо уменьшать индуктивность L .

При включении двухступенчатой системы вначале замыкаются дугогасительные контакты, а затем главные, что обеспечивает отсутствие дуги и оплавления серебряных поверхностей главных контактов. Вви­ду своей сложности двухступенчатые системы применяются только при очень больших токах (более 2000 А) в автоматах и выключателях вы­сокого напряжения. Во всех остальных случаях надежная работа кон­тактов обеспечивается выбором их материала и конструкции при ис­пользовании одноступенчатой системы.

В заключение отметим, что в настоящее время начинают широко применять электрические аппараты с герметизированными контактами и контактами, работающими в глубоком вакууме.

 

ЖИДКОМЕТАЛЛИЧЕСКИЕ КОНТАКТЫ

Наиболее характерные недостатки твердометаллических контактов следующие:

1. С ростом длительного номинального тока возрастают необходимое значение контактного нажатия, габариты и масса контактов. При токах 10 кА и выше резко увели­чиваются габариты и масса аппарата в целом.

2. Эрозия контактов ограничивает износостойкость ап­парата.

3. Окисление поверхности и возможность приваривания контактов понижают надежность аппарата. При больших токах КЗ контактные нажатия достигают больших значе­ний, что увеличивает необходимую мощность привода, габариты и массу аппарата.

Рассмотрим принцип действия контактора с жидкометаллическим контактом (ЖМК) (рис. 7.12).

 

Рис. 7.12. Контактор с жидкометаллическим контактом

 

Внешняя цепь подключается к электродам 1 и 2.Корпус 3 выполнен из электроизоляционного материала. Полости корпуса запол­нены жидким металлом 4 и соединяются между собой от­верстием 5. Внутри полостей корпуса плавают пустотелые ферромагнитные цилиндры 6.При подаче напряжения на катушку 7 цилиндры 6 опускаются вниз. Жидкий металл поднимается и через отверстие 5 соединяет электроды 1 и 2,контактор включается.

По сравнению с твердометаллическими жидкометаллические контакты облада­ют следующими преимуществами:

1. Малое переходное сопротивление и высокие допусти­мые плотности тока на поверхности раздела «жидкий ме­талл – электрод» (до 120 А/мм2), что позволяет резко сократить габаритные размеры контактного узла и контактное нажатие, особенно при больших токах.        

2. Отсутствие вибрации, приваривания, залипания и окисления контактов приих коммутации.        

3. Высокая механическая и электрическая износостойкость ЖМК, что позволяет создавать аппараты с большим сроком службы.

4. Возможность разработки коммутационных ап­паратов на новом принципе (автоматический восстанавли­вающийся предохранитель и др.) благодаря свойст­вам текучести жидкого металла.

5. Возможность работы ЖМК при высоких внешних давлениях, высоких температурах, в глубоком вакууме.

К электрическим аппаратам обычно предъявляется тре­бование сохранять работоспособность в интервале темпе­ратур -40…+40 °С. Очевидно, что жидкий металл должен со­хранять свое состояние в указанном интервале. Из извест­ных материалов только ртуть находится в жидком виде при температуре ниже 0 °С и может быть в чистом виде при­годна для ЖМК. Высокая токсичность паров ртути суще­ственно осложняет технологию ее применения.

В ЖМК перспективно применение диэлектрического или металлокерамического твердого каркаса, пропитанного жидким металлом.

 

ГЕРМЕТИЧНЫЕ КОНТАКТЫ (ГЕРКОНЫ)

Наименее надежным узлом электромагнитных реле яв­ляется контактная система. Электрическая дуга или искра, образующиеся при размыкании и замыкании контактов, приводят к их быстрому разрушению. Этому также способ­ствуют окислительные процессы и покрытие контактных поверхностей слоем пыли, влаги, грязи. Существенным не­достатком электромагнитных реле является и наличие трущихся механических деталей, износ которых также сказывается на их работоспособности. Попытки разместить контакты и электромагнитный механизм в герметизирован­ном объеме с инертным газом не приводят к положительным результатам из-за больших технологических и кон­структивных трудностей, а также из-за того, что контак­ты при этом не защищаются от воздействия продуктов износа и старения изоляционных материалов. Другим не­достатком электромагнитных реле является их инерцион­ность, обусловленная значительной массой подвижных де­талей. Для получения необходимого быстродействия при­ходится применять специальные схемы форсировки, что приводит к снижению надежности и росту потребляемой мощности.

Перечисленные недостатки электромагнитных реле при­вели к созданию реле с герметичными магнитоуправляемыми контактами (герконами).

Простейшее герконовое реле с замыкающим контактом изображено на рис. 7.13, а. Контактные сердечники (КС) 1 и 2 изготавливаются из ферромагнитного материала с высокой магнитной проницаемостью (пермаллоя) и вварива­ются в стеклянный герметичный баллон 3. Баллон запол­нен инертным газом – чистым азотом или азотом с не­большой (около 3%) добавкой водорода. Давление газа внутри баллона составляет (0,4 ÷ 0,6)·105 Па. Инертная среда предотвращает окисление КС. Баллон устанавлива­ется в обмотке управления 4. При подаче тока в обмотку возникает магнитный поток Ф, который проходит по КС 1 и 2 через рабочий зазор δ между ними и замыкается по воздуху вокруг обмотки 4.Поток Ф при прохождении через рабочий зазор создает тяговую электромагнитную силу Рэ, которая, преодолевая упругость КС, соединяет их между собой. Для улучшения контактирования поверхно­сти касания покрываются тонким слоем (2 ÷ 50 мкм) золота, родия, палладия, рения, серебра и др.


Дата добавления: 2021-04-24; просмотров: 72; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!