Шарнирно-подвижная и неподвижная опоры



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА

 

 

Развитие современной техники ставят перед её разработчиками разнообразные задачи, связанные с проектированием технических объектов: строительных конструкций и сооружений, машин различного функционального назначения и т. д. Несмотря на разнообразие этих объектов, решения поставленных задач основываются на принципах, которые имеют общую научную базу. Объясняется это тем, что в большинстве задач значительное место занимают вопросы, требующие изучения законов равновесия или движения механических систем.

Теоретическая механика представляет собой одну из научных основ современных технических дисциплин, таких как теория механизмов и машин, сопротивление материалов, детали машин и т. д. Теоретическая механика является одним из разделов механики.

 

Механика– наука о механическом движении и механическом взаимодействии материальных тел.

Теоретическая механика– раздел механики, в котором изучают законы движения механических систем и общие свойства этих движений.

 

Курс теоретической механики состоит из трёх разделов: статика, кинематика, динамика. Как правило, изучение теоретической механики начинают с первого раздела – статики.

 

РАЗДЕЛ ПЕРВЫЙ

 

 


СТАТИКА

 

 

Основные понятия статики

 

 

В основу каждого раздела механики положен ряд понятий и определений, принята система аксиом, т. е. важнейших положений, многократно подтверждённых практикой. Приступая к изучению статики, следует определить основные понятия, встречающиеся в этом разделе механики.

 

Статикараздел механики, в котором изучают условия равновесия механических систем под действием сил.

 

Массаодна из основных характеристик любого материального объекта, определяющая его инертные и гравитационные свойства.

 

Масса является мерой инертности точки и мерой инертности тела при его поступательном движении. Масса измеряется в кг.

 

Инертностьсвойство материального тела, проявляющееся в сохранении движения, совершаемого им при отсутствии действующих сил, и в постепенном изменении этого движения с течением времени, когда на тело начинают действовать силы.

Материальная точкаточка, имеющая массу.

 

Материальная точка не имеет размеров и обладает способностью взаимодействовать с другими материальными точками.

 

Абсолютно твёрдое теломатериальное тело, в котором расстояние между двумя любыми точками остается неизменным (рис. 1.1).

 

 

    Рис. 1.1

В природе такие тела отсутствуют, так как каждое тело деформируется в результате приложенных воздействий. Однако принятое допущение (абсолютно твёрдое тело) значительно упрощает изучение действия сил на тело и условий, при которых эти силы уравновешиваются. В дальнейшем абсолютно твёрдые тела условлено называть телами.

 

Механическая системалюбая совокупность материальных точек.

 

Движения материальных точек в механической системе взаимозависимы. В механике тело рассматривают как механическую систему, образованную непрерывной совокупностью материальных точек. Тела могут взаимодействовать друг с другом.

 

Механическое действиедействие на данное тело со стороны других тел, которое приводит к изменению скоростей точек этого тела или следствием которого является изменение взаимного положения точек данного тела.

 

Другими словами, при механическом действии тело приобретает механическое движение.

 

Механическое движениеизменение с течением времени взаимного положения тел в пространстве или взаимного положения частей данного тела.

    Рис. 1.2

Таким образом, тело либо деформируется, либо перемещается в пространстве. Деформацию тел изучает наука – сопротивление материалов. Так как в теоретической механике имеют дело с абсолютно твёрдыми телами, то при механическом действии тела изменяют свое положение в пространстве относительно друг друга. В общем случае тело может поступательно перемещаться в пространстве по трём направлениям (параллельно координатным осям OX, OY, OZ) и вращаться относительно этих осей (рис. 1.2).

 

Свободное телотело, на перемещения которого в пространстве не наложено никаких ограничений.

 

Следовательно, свободное тело может осуществлять в системе отсчёта OXYZ шесть движений. Другими словами, тело имеет шесть степеней свободы.

Тело может находиться в состоянии покоя, которое является частным случаем механического движения, когда скорости точек рассматриваемого тела равны нулю. Если тело покоится, то говорят, что оно находится в состоянии равновесия.

 

Равновесие механической системы состояние механической системы, при котором её точки под действием приложенных сил остаются в покое по отношению к рассматриваемой системе отсчёта.

Система отсчётасистема координат, связанная с телом, по отношению к которому определяется положение других тел (механических систем) в разные моменты времени.

 

Важнейшим понятием в теоретической механике является понятие силы.

 

Сила– векторная величина, являющаяся мерой механического действия одного тела на другое.

 

    Рис. 1.3

Сила как вектор определяется тремя элементами: числовым значением (модулем), направлением и точкой приложения. Графически силу изображают направленным прямолинейным отрезком (вектором), совпадающим по направлению с направлением силы (рис. 1.3).

F
Длина этого отрезка выражает в выбранном масштабе модуль силы, его начало совпадает с точкой приложения силы. Иногда удобно изображать силу так, что точкой её приложения является конец вектора силы – острие стрелки. Силу и её модуль обозначают следующим образом: F, P, Q – сила; F, P, Q – модуль силы. В технической литературе используют и другой вид обозначения силы: , , .

 

Линия действия силы– прямая линия, вдоль которой направлен вектор, изображающий силу.

 

Простейшим примером силы является сила тяжести, с которой тело притягивается к Земле.

Сила тяжестисила, действующая на материальную точку вблизи земной поверхности, равная произведению массы m этой точки на ускорение g свободного падения в вакууме.

G = m·g.

 

Сила тяжести G прикладывается в центре С тяжести тела и направлена к центру Земли (по вертикали). В неподвижной (НСО) относительно Земли системе отсчёта OXYZ сила тяжести тела изображается так, как это показано на рис. 1.4.

  Рис. 1.4

Если речь идет о величине (модуле) силы тяжести тела, то употребляют термин «вес тела».

 

Вес тела– сумма модулей сил тяжести, действующих на частицы этого тела.

 

Вес G тела находят по формуле

G = m·g.

Силы имеют различную физическую природу, например, сила давления пара, сила притяжения наэлектризованных тел и т. д. В теоретической механике не рассматривают физическую природу сил, здесь важны только величина, направление и точка приложения силы. Модуль силы измеряют в ньютонах [H].

Силы, действующие на механическую систему, делят на две группы: внешние и внутренние.

Внешняя силасила, действующая на какую-либо точку механической системы со стороны тел, не принадлежащих рассматриваемой механической системе.

 

Внешние силы принято обозначать символами: FiE, RiE.

 

Внутренние силысилы, действующие на какие-либо точки механической системы со стороны других точек, принадлежащих рассматриваемой механической системе.

 

Внутренние силы принято обозначать символом RiJ.

 

Система силлюбая совокупность сил, действующих на механическую систему.

 

Систему сил принято обозначать (F1,…,Fn).

Уравновешенная система силсистема сил, которая будучи приложена к свободному телу, находящемуся в равновесии, не выводит его из этого кинематического состояния.

Уравновешивающая система силсистема сил, которая вместе с заданной другой системой сил составляет уравновешенную систему сил.

Эквивалентные системы силдве или несколько систем сил, имеющих одну и ту же уравновешивающую систему сил.

 

Эквивалентные системы сил приводят свободное тело в одно и то же кинематическое состояние. Для обозначения эквивалентности систем сил используют знак «~».

Равнодействующая системы силсила, эквивалентная данной системе сил.

Плоская система силсистема сил, линии действия которых расположены в одной плоскости.

Сходящаяся система силсистема сил, линии действия которых пересекаются в одной точке.

 

Из курса физики известно, что равнодействующая сходящейся системы сил графически определяется по правилу силового многоугольника (рис. 1.5).

При построении силового многоугольника равнодействующая R соединяет начало первого вектора с концом последнего. Силовой многоугольник не замкнут.

Таким образом, сходящаяся система сил имеет равнодействующую R, определяемую векторным равенством:

R = F1 +…+ F4.

В общем случае для системы сходящихся сил (F1,…,Fn) используют векторное равенство R = Σ Fi.

Рис. 1.5

 

Рис. 1.6

Уравновешенную систему сил графически изображают замкнутым силовым многоугольником, в котором конец последнего вектора приходит в начало первого вектора (рис. 1.6).

Такую систему сил описывают равенством R = F1 +…+ F4 = 0. В общем случае для уравновешенной системы сил (F1,…,Fn) справедливо равенство R = Σ Fi = 0.

Силы делят на сосредоточенные и распределённые.

Сосредоточенная силасила, приложенная к телу в какой-либо одной его точке.

Распределённые силысилы, действующие на все точки некоторой части линии, поверхности или объёма.

 

Понятие о сосредоточенной силе является условным, так как практически приложить силу в точке нельзя. Силу, которую в механике рассматривают как сосредоточенную, представляет собой равнодействующую некоторой системы распределённых сил.

Распределённые силы характеризуются величиной qинтенсивности распределения силы, т. е. величиной силы на единицу объёма, поверхности или длины линии. Интенсивность распределения силы может иметь следующие размерности: Н/м3; Н/м2; Н/м. На тела в основном действуют параллельные и сходящиеся распределённые силы. К параллельным силам, распределённым по объёму, относятся силы тяжести частиц тела.

Поскольку все аксиомы и теоремы статики формулируются для сосредоточенных сил, необходимо рассмотреть способы перехода от распределённых сил к сосредоточенным силам.

Рассмотрим замену линейно распределённых сил сосредоточенной силой.

  Рис. 1.7

Равнодействующую распределённых на линии параллельных сил постоянной интенсивности q определяют по формуле Q = q×L, где L – длина балки (рис. 1.7).

Равнодействующая распределённых сил (сосредоточенная сила) прикладывается к балке под центром тяжести площади прямоугольника.

  Рис. 1.8

В инженерной практике часто применяют нагрузку, интенсивность которой изменяется по закону треугольника (рис. 1.8).

 

Равнодействующую параллельных распределённых сил на линии с интенсивностью, изменяющейся по закону треугольника, определяют по формуле Q = 0,5qmax×L, где qmax – наибольшая интенсивность. Линия действия сосредоточенной силы Q смещена в сторону наибольшей интенсивности и проходит через центр тяжести площади треугольника.

  Рис. 1.9

В более сложных случаях распределённые нагрузки заменяют несколькими сосредоточенными силами. Пример такой замены приведен на рис. 1.9.

Модули Q1, Q2 сил Q1, Q2 определяют по формулам:

Q1 = q1·L; Q2 = 0,5·(q2 – q1)·L.

Аксиомы статики

 

 

1. Аксиома инерции. Под действием уравновешенной системы сил (ΣFi = 0 или (F 1 ,…, Fn) ~ 0) свободное тело находится в состоянии покоя или равномерного прямолинейного движения.

2.

Рис. 1.10

Аксиома равновесия двух сил. Две силы, приложенные к телу, уравновешиваются только в том случае, если их модули равны и они направлены по одной прямой в противоположные стороны (рис. 1.10).

3. Аксиома присоединения и исключения уравновешенной системы сил. Действие системы сил на тело не изменится, если к ней присоединить или из неё исключить уравновешенную систему сил.

Следствие 1

 

Рис 1.11

Не изменяя кинематического состояния тела, силу можно переносить по линии действия, сохраняя неизменными её модуль и направление (рис. 1.11).

Так как силу можно переносить в любую точку её линии действия, то силу рассматривают как скользящий вектор.

Следствие 2

 

Рис. 1.12

Систему сходящихся сил можно заменить системой сил, приложенных в одной точке (рис. 1.12).

 

4. Аксиома параллелограмма сил. Равнодействующая двух пересекающихся сил приложена в точке их пересечения и изображается диагональю параллелограмма, построенного на этих силах (рис. 1.13).

    Рис. 1.13

Это положение выражается следующим геометрическим равенством: R = F1 + F2. Модуль равнодействующей силы определяют по формуле

,

где j – угол между направлениями сил F1 и F2.

Параллелограмм сил можно заменить силовым треугольником. Тогда справедливо равенство

.

Эта аксиома допускает и обратное утверждение. Силу можно разложить бесчисленным образом раз на две силы, параллельные выбранным произвольным координатным осям (рис. 1.14).

  Рис. 1.14

F = FOX + FOY = FO1X1 + FO1Y1.

 

Векторы FOX, FOY, FO1X1, FO1Y1 называют компонентами силыF по соответствующим координатным осям.

 

Примечание. Силу F раскладывают на составляющие по координатным осям только в точке её приложения.

5. Аксиома равенства действия и противодействия. Всякому действию соответствует равное и противоположно направленное противодействие.

 

Эта аксиома утверждает, что силы действия друг на друга двух тел равны по модулю и направлены по одной прямой в противоположные стороны.

На рис. 1.15 груз А лежит на столе В. Груз весом G давит на стол. Сила давления груза на стол равна силе тяжести G. Стол же противодействует грузу с силой N.

    Рис. 1.15

Таким образом, в природе не существует одностороннего действия силы. Однако эти силы не образуют уравновешенную систему сил, так как они приложены к разным телам.

 

6. Аксиома сохранения равновесия сил, приложенных к деформирующемуся телу при его затвердевании. Равновесие сил, приложенных к деформирующемуся телу, сохраняется при его затвердевании.

 

Из этой аксиомы следует, что условия равновесия сил, приложенных к телу, должны выполняться и для сил, приложенных к деформирующемуся телу. Однако в случае деформирующегося тела эти условия необходимы, но недостаточны. Так, например, условие равновесия двух сил, приложенных к стержню на его концах, состоит в том, что силы равны по модулю и направлены по одной прямой в противоположные стороны. Две уравновешивающиеся силы, приложенные к нити, удовлетворяют этому условию, но при наличии дополнительного условия: силы должны только растягивать, а не сжимать нить.

 

Вопросы и задания для самоконтроля

 

 

1. Сформулировать определение термина «механика».

2. Сформулировать определение термина «теоретическая механика».

3. Сформулировать определение термина «статика».

4. Сформулировать определение термина «масса».

5. Сформулировать определение термина «инертность».

6. Сформулировать определение термина «материальная точка».

7. Сформулировать определение термина «абсолютно твёрдое тело».

8. Сформулировать определение термина «механическая система».

9. Сформулировать определение термина «механическое действие».

10. Сформулировать определение термина «механическое движение».

11. Сформулировать определение термина «свободное тело».

12. Сформулировать определение термина «равновесие механической системы».

13. Сформулировать определение термина «система отсчёта».

14. Сформулировать определение термина «сила».

15. Сформулировать определение термина «линия действия силы».

16. Сформулировать определение термина «сила тяжести».

17. Сформулировать определение термина «вес тела».

18. Сформулировать определение термина «внешняя сила».

19. Сформулировать определение термина «внутренние силы».

20. Сформулировать определение термина «система сил».

21. Сформулировать определение термина «уравновешенная система сил».

22. Сформулировать определение термина «уравновешивающая система сил».

23. Сформулировать определение термина «эквивалентные системы сил».

24. Сформулировать определение термина «равнодействующая системы сил».

25. Сформулировать определение термина «плоская система сил».

26. Сформулировать определение термина «сходящаяся система сил».

27. Сформулировать определение термина «сосредоточенная сила».

28. Сформулировать определение термина «распределённые силы».

29. Сформулировать аксиому инерции.

30. Сформулировать аксиому равновесия двух сил.

31. Сформулировать аксиому присоединения и исключения уравновешенной системы сил.

32. Сформулировать первое следствие из аксиомы присоединения и исключения уравновешенной системы сил.

33. Сформулировать второе следствие из аксиомы присоединения и исключения уравновешенной системы сил.

34. Сформулировать аксиому параллелограмма сил.

35. Сформулировать аксиому равенства действия и противодействия.

36. Сформулировать аксиому равновесия сил, приложенных к деформирующемуся телу при его затвердевании.

37. Записать формулу для определения равнодействующей системы сходящихся сил.

38. Записать формулу для определения модуля сосредоточенной силы при действии на балку распределённой нагрузки с интенсивностью q, изменяющейся по закону прямоугольника.

39. Записать формулу для определения модуля сосредоточенной силы при действии на балку распределённой нагрузки с интенсивностью q, изменяющейся по закону треугольника.

40. Используя аксиому параллелограмма сил, записать формулу для определения модуля равнодействующей двух сходящихся сил.

41. Используя правило треугольника, записать формулу, связывающую модули двух сходящихся сил и их равнодействующую.

42. Записать формулу, выражающую аксиому равновесия двух сил.

 

 

Связи и реакции связей

 

 

Несвободное телотело, на перемещения которого в пространстве наложены ограничения.

 

    Рис. 1.16

На рис. 1.16 изображено несвободное тело, лежащее на горизонтальной плоскости OXY. Эта плоскость наложила следующие ограничения на перемещения цилиндра: поступательное перемещение, параллельное оси OZ, и повороты относительно осей OX и OY. Плоскость OXY по отношению к телу является связью.

Связиматериальные тела, накладывающие ограничения на положения и скорости точек механической системы, которые должны выполняться при любых действующих на систему силах.

 

Плоскость OXY (см. рис. 1.16) позволяет цилиндру осуществлять поступательные движения, параллельные координатным осям OX и OY, и поворот в плоскости OXY. Пример несвободного тела – дверь, подвешенная на шарнирах. Связями для двери являются шарниры.

Тело А (рис. 1.17), стремясь под действием силы тяжести G осуществить вертикальное перемещение, которому препятствует связь (тело В), действует на него с некоторой силой, называемой силой давления на связь.

Одновременно (по аксиоме 5) связь действует на тело с такой же по модулю, но противоположно направленной силой N: N = – G. Силу N называют реакцией связи. Реакции связей относятся к разряду внешних сил.

Реакции связейсилы, действующие на точки механической системы со стороны материальных тел, осуществляющих связи, наложенные на эту систему.

 

    Рис. 1.17

В дальнейшем силы, не являющиеся реакциями связей, называют активными силами. Активные силы, как и реакции связей, относятся к разряду внешних сил. Особенностью активной силы является то, что её модуль и направление непосредственно не зависят от других, действующих на тело сил. Реакция связи зависит от действующих на тело активных сил и заранее неизвестна. Если на тело не действуют активные силы, то реакции связей равны нулю.

Для определения величин реакций связей надо решить соответствующую задачу статики. Направлена реакция связи в сторону, противоположную той, куда связь не дает перемещаться телу. Если связь одновременно препятствует перемещениям тела по нескольким направлениям, то направление реакции связи заранее неизвестно и должно определяться при решении конкретной задачи.

Рассмотрим подробнее, как направлены реакции основных видов связей.

Гладкая связьматериальное тело, имеющее поверхность, силами трения о которую рассматриваемой механической системы пренебрегают.

 

Такая поверхность не дает телу перемещаться только по направлению общего перпендикуляра (нормали) к поверхностям соприкасающихся тел в точке их касания (рис. 1.18).

 

  Рис. 1.18

Реакция N гладкой поверхности направлена по общей нормали к поверхности соприкасающихся тел в точке их касания и приложена в этой точке со стороны связи.

Когда одна из соприкасающихся поверхностей является точкой или линией, то реакция этой связи направлена по нормали к другой поверхности. Зачастую реакцию N называют нормальной реакцией.

Гибкая связьнерастяжимые нить или трос, вес которых не учитывают.

 

Рис. 1.19

На рис. 1.19 изображены тела (механические системы), на которые наложены гибкие связи (нити).

Реакции ТА, ТВ натянутых нитей направлены вдоль нитей от тела к точкам подвеса нитей.

Невесомый стержень– недеформируемый стержень, загруженный только по его концам.

 

  Рис. 1.20

Невесомый стержень соединяется с телом и опорой шарнирно. На рис. 1.20 изображена балка, опирающаяся на три невесомых стержня.

При этом один стержень прямой, а остальные изогнуты. Реакция невесомого стержня направлена по линии, соединяющей концы стержня. Прямой стержень работает только на растяжение или сжатие.

Шарнирно-подвижная и неподвижная опоры

  Рис. 1.21

На рис. 1.21 изображена горизонтальная балка, опирающаяся на шарнирно-подвижную и неподвижную опоры в точках А и В.

Реакция RA шарнирно-подвижной опоры направлена по нормали к опорной поверхности в сторону балки. Шарнирно-подвижная опора поставлена на катки, которые не препятствуют перемещению балки вдоль опорной поверхности. Если не учитывать трения катков, то линия действия реакции RA проходит через центр шарнира перпендикулярно опорной поверхности.

Шарнирно-неподвижная опора препятствует поступательным перемещениям балки вдоль координатных осей, но дает ей возможность поворачиваться относительно оси шарнира. Линия действия реакции RB шарнирно-неподвижной опоры проходит через центр шарнира, но модуль и направление реакции заранее неизвестны.

На рис. 1.22 изображена балка АВ. По аксиоме параллелограмма сил, которая допускает обратное толкование, реакцию RВ можно разложить на составляющие, параллельные координатным осям.

  Рис. 1.22

Силы YВ, ZВ называют компонентами реакцииRВ по координатным осям.

Более сложные виды связей и их реакции рассматриваются позднее, когда будут введены понятия пары сил и моментов сил относительно точки и оси.

Аксиома связей – всякое несвободное тело можно рассматривать как свободное, если отбросить связи и заменить их действие реакциями этих связей.

 

На рис. 1.23 изображена балка АВ, рассматриваемая как несвободная механическая система, на которую наложены внешние связи.

Шарнирно-неподвижная опора в точке В не позволяет балке перемещаться поступательно параллельно координатным осям и позволяет поворачиваться в плоскости рисунка. Исходя из этого, реакцию RВ раскладывают на её составляющие YВ, ZВ, параллельные координатным осям.

Шарнирно-подвижная опора в точке А не позволяет балке совершить перемещение на опорную поверхность, поэтому её реакция RА направлена по нормали.

 

 

    Рис. 1.23

 

    Рис. 1.24

В инженерной практике принято реакции связей показывать непосредственно на исходном рисунке. Это позволяет избежать дополнительных чертёжных работ. На рис. 1.24 балка АВ считается свободным телом, которое может совершать в плоскости OXY два поступательных перемещения, параллельные координатным осям, и вращение в этой плоскости.

Балка АВ находится в равновесии под действием активных сил F1, F2 и реакцийZB, YB, RA внешних связей. Реакцию RA целесообразно разложить на составляющие силы по координатным осям.

 


Дата добавления: 2020-04-25; просмотров: 1636; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!