Показательное распределение (экспоненциальное)



Это распределение которое описывается деф.функцией вида:

Где -параметр деф.функции  и , таким образом показательное распределение в отличии от нормального задается только . В качестве примера НСВ которая подчиняется показательному закону распределения можно привести временной интервал появления 2х последовательных событий простейшего потока.

Интегральная функция:  На практике часто становится задача отыскания вероятности попадания в (a,b) НСВ Х подчиняющейся показательному закону распределения вероятности который задан интегральной функцией вида

Для решения данной задачи  с учетом того что  получаем  значение функции затабулировано.

Найдем Мат.ожидание НСВ Х распределенной по показательному закону:  в результате 2го интегрирования получаем

Дисперсия НСВ Х распределенной по показательному закону: полученный интеграл находим двукратного применения формулы интегрирования по частям

Среднеквадратическое отклонение НСВ Х:

40. Функцией надежности R ( t ) называют функцию, определяющую вероятность безотказной работы устройства в течение времени t. Функция надежности.

Пусть элемент (то есть некоторое устройство) начинает работать в момент времени t 0 = 0 и должен проработать в течение периода времени t . Обозначим за Т непрерывную случайную величину – время безотказной работы элемента, тогда функция F(t) = p(T > t) определяет вероятность отказа за время t. Следовательно, вероятность безотказной работы за это же время равна

R(t) = p(T > t) = 1 – F(t).

Эта функция называется функцией надежности.

Показательный закон надежности.

Часто длительность безотказной работы элемента имеет показательное распределение, то есть

F(t) = 1 – e - λt .

Следовательно, функция надежности в этом случае имеет вид:

R(t) = 1 – F(t) = 1 – (1 – e-λt) = e-λt .

Показательным законом надежности называют функцию надежности, определяемую равенством

R(t) = e - λt ,

где λ – интенсивность отказов.

 

Интегральная функция распределения двумерной СВ.

Пусть (ХУ) –двумерная СВ а ху пара действительных чисел. Обозначим через F(x,y) – вероятность события состоящего в том что СВ Х примет значение <х и в тоже время СВ У <у при изменении чисел х, у будет изменятся F(x,y) т.е F(x,y) рассматривается как функция от х и у.

Интегральная функция распределения двумерной СВ – это функция F(x,y) которая для каждой пары чисел (x,y) определяет вероятность того что СВ Х примет значение<х и в тоже время СВ У <у :

Свойства:

1)значение интегральной функции F(x,y) удовлетворяет: . Док-во: в основе данного свойства лежит определение интегральной функции как вероятности т.е вероятность – это всегда неотрицательное число и меньше 1

2) интегральная функция F(x,y) является неубывающей функцией по каждому аргументу:  если x2>x1 если y2>y1

3) для интегральной функции распределения двумерной СВ справедливо: ; ; ;

4) при интегральная функция F(x,y) системы двух СВ становится интегральной функцией компонента х: , при интегральная функция F(x,y) системы двух СВ становится интегральной функцией компонента y .

При помощи интегральной функции F(x,y) системы СВ Х и У можно рассматривать и рассчитать вероятность того что в результате эксперемента случайная точка попадает в полуполосу  . для определения вероятности попадания случайной точки в полуполосу у применяют формулу :

Для определения вероятности попадания случайной точки в полуполосу х:  следовательно вероятность попадания случайной точки в полуполосу рассчитывается как приращения интегральной функции системы 2х СВ по одному из аргументов.

 

Деф.функция двумерной НСВ.

Двумерная НСВ может быть задана не только при помощи интегральной но и при помощи деф.функции распределения вероятностей.

Деф.функция распределения двумерной НСВ Х и У это вторая смешенная частная производная от интегральная функции F(x,y):

Если известна деф.функция f(x,y) двумерной СВ то интегральную функцию F(x,y) можно рассчитать по формуле

Свойства:

1) деф.функция f(x,y) является неотрицательной  

2) двойной несобственный интеграл с бесконечными пределами от деф.функции =1

3) если все возможные значения (x,y) принадлежат конечной области Д то


Дата добавления: 2020-01-07; просмотров: 371; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!