Свойство дисперсии дискретной случайной величины.



1) Дисперсия постоянной случ. Величины k=0; D(K)=0;

2) Постоянный множитель можно выносить за знак дисперсии возводя его в квадрат, т.е. D(Kx)=K2 D(x);

3) Дисперсия суммы двух независимых случайных величин = сумме дисперсий этих величин: D(x+y)=D(x)+D(y)

Следствие 1: дисперсия суммы нескольких попарно независимых с.в. = сумме дисперсии этих величин;

Следствие 2: дисперсия суммы постоянной и случайной величины = дисперсии с.в.: D(k+x)=D(x)

4) Дисперсия разности двух независимых с.в. = сумме их дисперсий: D(x-y)=D(x)+D(y)

Мат. ожидание и дисперсия числа появления событий в независимых испытаниях.

Пусть осуществляется n-незав. испытаний. В каждом из этих испытаний вероятность наступления события А постоянно и =p. Необходимо определить среднее число появления события А в этих испытаниях.

Теорема: мат.ожидание М(х) числа появления события А в n-незав. испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытание.

M(x)=np

Пусть осуществляется n-незав. испытаний. В каждом из этих испытаний вероятность наступления события А постоянно и =p. Необходимо определить дисперсию числа появления события А в этих испытаниях.

Теорема: дисперсия числа наступления события А в n-независимых испытаниях, в каждом их которых появления события постоянно и равно произведению числа испытаний на вероятность наступления и не наступления события в одном испытании.

D(x)=npq.

Среднее квадратичное отклонение.

Кроме дисперсии для оценивания, рассеивания возможных значений случайной величины вокруг ее среднего значения используют показатель среднее квадратичное отклонение.

Средним квадратичным отклонение с.в. X называется квадратный корень из ее дисперсии: G(x)=кв.корень из D(x)

Размерность квадратного отклонения совпадает с размерностью с.в.X.

Свойства: 1) G(K)=0; 2) при умножении случайной величины X на постоянное число k, ее среднее квадратичное отклонение умножается на туже постоянную k.

Теорема: Среднее квадратичное отклонение суммы конечного числа попарно независимых с.в. = кв. корень из суммы квадратов средних квадратичных отклонений этих величин.

Одинаково распределенные попарно независимые случайные величины.

Дано n-попарно независимых случайных величин x1,x2,…xn, кот. является одинаково распределенными. Следовательно, данные случайные величины имеют одинаковое мат. ожидание, дисперсию и другие числовые значения. Среднеарифметические с.в. X, рассм. с.в. по следующей формуле: X=x1+x2+…+xn/ n.

Свойства среднеарифметической случайной величины: 1) мат. ожидание среднеарифметической одинаково распред. попарно независимой с.в.= мат. ожидании, а каждое их них: M(x)=a;

2) дисперсия среднеарифметической n-одинаково распределенной попарно независимой с.в. в n-раз меньше дисперсии каждой из величин: D(x)=D(x)/n;

3) среднее квадратичное отклонение среднего арифметического n-один. распред. попарно независимых с.в. в кв. корень их n раз меньше средне квадратичного отклонения каждого из этих величин: G(x)=G(x)/кв.корень из n.

Неравенства Чебышева.

Для рассмотрения теорем , носящих общее название закона больших чисел, необходимо знание неравенства Чебышева. Пусть случайная дискретная величина X задана след. законом распределения:

необходимо оценить вероятность того, что отклонение с.в. от ее мат. ожидания не превышает по абсолютной величине положительного числа E, в том случае если E достаточно мало, то задачей будет оценивание вероятностей того, что с.в. X примет значение достаточно близкое к своему мат. ожиданию. Поставленная задача решается с помощью неравенства Чебышева.

Вероятность того, что отклонение случайной величины X от ее M(x) по абсолютной величине меньше положительного числа E, не менее чем 1-D(x)/E2, т.е. вероятность P( [x-M(x)]меньше E)больше или равно 1- D(x)/E2.

Теорема Чебышева.

Если последовательность попарно независимых с.в. x1,x2,…xn, имеющих дисперсию, ограниченные одной и той же постоянной C, т.е. D(Xi)<_C; i=1,2…n, то как бы нибыло мало положительное число E, вероятность неравенства:

будет приближаться к 1, если число с.в. достаточно мало, т.е. для любого положительного числа E существует предел:

Теорема Бернулли

Осущ-ся n независимых испытаний, в каждом из этих испытаний вер-ти наступления соб. А-постоянна и равна p. Необходимо определить какова будет относительная частота появлении соб.А, для этого используют теорему Бернулли. Теорема. Если в каждом, из n независисых испытаний, соб.А имеет постоянную вероятность p, то как угодно близка к 1 вер-ть того, что отклонение относительной частоты m/n от вер-ти p, но абсолютная величина будет сколь угодно малой, если число наступлений достаточно велико, т.е. при соблюдении условий теоремы, справндливо равенство: lim p(|m/n-p|<E)=1 Док-во: xi-где х=1,2,3…n. Пусть xi-дискретная случайная величина, хар-щая числопоявления соб. В каждом из испытаний. Данная величина может принимать только два значения: соб.А-наступило с вер-тью p и 0-соб.А не наступило, с вер-ю q=1-p. Случайная дискретная величина xi-является попарно независимой и дисперсии их ограничены, следовательно к данной величине можно применить теорему Чебышева: Мат.ожидание каждой из величин xi- равно вер-ти p наступления события, поэтому . Необходимо доказать, что дробь равна относительной частоте m/n появления соб.А, в n испытаниях. Каждая из величин xi, где i-1,2,3…n, при наступлении соб.А в соответст. испытании принимает значение равное 1, следовательно, тогда в испытаниях, с учётом последнего равенства можно записать: lim p(|m/n-p|<E)=1, ч.т.д.

При использовании теоремы Бернулли необходимо учитывать то, что из неё рав-во lim m/n=p. Главным утверждением теоремы является то, что при достаточно большом кол-ве испытаний относительная частота m будет сколь угодно мало отличаться от постоянной вер-ти p наступления события в каждом испытании, т.е. теорема Бернулли утверждает, что при  , что относительная частота         .

 


Дата добавления: 2020-01-07; просмотров: 126; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!