ПРИЗНАК ПАРАЛЛЕЛЬНОСТИ ПРЯМОЙ И ПЛОСКОСТИ



Теорема: Для того, чтобы прямая была параллельна плоскости, необходимо и достаточно, чтобы прямая была параллельна некоторой прямой, принадлежащей плоскости.

1. Необходимый признак:

Если прямая параллельна плоскости, то она параллельна некоторой прямой, принадлежащей плоскости.

2. Достаточный признак:

Если прямая параллельна некоторой прямой, принадлежащей плоскости, то она параллельна плоскости.

Вывод: Чтобы доказать, что данная прямая параллельна данной плоскости, надо назвать (найти) в этой плоскости прямую, параллельную данной прямой.

Упражнения:

Сторона АВ треугольника АВС лежит в плоскости a. Как расположена относительно этой плоскости прямая MN, проходящая через середины сторон АС и ВС?

Через сторону АВ правильного шестиугольника ABCDEF проведена плоскость a. Как расположены по отношению к этой плоскости прямые: С F, CD, DF, DE?

5. ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ДВУХ ПЛОСКОСТЕЙ

ПРИЗНАК ПАРАЛЛЕЛЬНОСТИ ДВУХ ПЛОСКОСТЕЙ

ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ДВУХ ПЛОСКОСТЕЙ

I4. Через три точки, не принадлежащие одной прямой, проходит одна и только одна плоскость.

Вывод: Плоскости, имеющие три различные общие точки, совпадают.

 

I5. Если две различные плоскости имеют общую точку, то их пересечением является прямая.

Вывод: Две плоскости либо пересекаются по прямой, либо не пересекаются, то есть не имеют ни одной общей точки.

 

В пространстве рассматриваются три случая возможного расположения двух плоскостей:

1. Плоскости совпадают. Рис. 1. a = АВС ;

2. Плоскости пересекаются. Рис. 2. a ì ü b = l ;

3. Плоскости не имеют общих точек. Рис. 3. a ì ü b = Æ .

 


Рис. 1.                              Рис. 2.                               Рис. 3.

Определение: Плоскости параллельны, если они не имеют общих точек или совпадают.

ПРИЗНАК ПАРАЛЛЕЛЬНОСТИ ДВУХ ПЛОСКОСТЕЙ

Теорема: Если две пересекающиеся прямые одной плоскости параллельны соответственно двум прямым другой плоскости, то эти плоскости параллельны.

Дано:

Доказать:

Вывод: Чтобы доказать, что две данные плоскости параллельны, надо указать в первой плоскости две пересекающиеся прямые и во второй плоскости найти две прямые, каждая из которых параллельна одной из двух указанных прямых первой плоскости.

Упражнение: Каким может быть взаимное расположение прямых а и b, каждая из которых лежит в одной из двух различных параллельных плоскостей?

ТЕТРАЭДР. ПАРАЛЛЕЛЕПИПЕД

В теме «Геометрические тела, их поверхности и объёмы» мы будем изучать многогранники – геометрические тела, поверхности которых составлены из многоугольников. Для иллюстрации понятий, связанных с взаимным расположением прямых и плоскостей в пространстве познакомимся с двумя многогранниками – тетраэдром и параллелепипедом.

 

Рассмотрим произвольный треугольник АВС и точку D, не лежащую в плоскости этого треугольника. Соединив точку D отрезками с вершинами треугольника  АВС, получим треугольники DАВ, DВС, DСА.

Поверхность, составленная из четырёх треугольников АВС, DАВ, DВС, DСА, называется тетраэдром и обозначается DАВС.

Треугольники, из которых состоит тетраэдр, называются гранями, их стороны – рёбрами, а вершины – вершинами тетраэдра. Тетраэдр имеет четыре грани, шесть рёбер и четыре вершины.

Два ребра тетраэдра, не имеющие общих вершин, называются противоположными. У тетраэдра DАВС противоположными являются рёбра АD и ВС, ВD и АС, СD и АВ. Часто одну из граней тетраэдра называют основанием, и три другие – боковыми гранями.

Рассмотрим два равных параллелограмма АВСD и А1В1С1D1, расположенных в параллельных плоскостях так, что отрезки АА1, ВВ1, СС1 и DD1 параллельны. Четырёхугольники АВВ1А1, ВСС1В1, СDD1С1, DАА1D1 также являются параллелограммами, так как каждый из них имеет попарно параллельные противоположные стороны.

Поверхность, составленная из двух равных параллелограммов АВСD и А1В1С1D1 и четырёх параллелограммов АВВ1А1, ВСС1В1, СDD1С1,  DА А1D1, называется параллелепипедом и обозначается АВСDА1В1С1D1.

Параллелограммы, из которых составлен параллелепипед, называются гранями, их стороны – рёбрами, а вершины параллелограммов – вершинами параллелепипеда. Параллелепипед имеет шесть граней, двенадцать рёбер и восемь вершин.

Две грани параллелепипеда, имеющие общее ребро, называются смежными, а не имеющие общих рёбер – противоположными.

Две вершины, не принадлежащие одной грани, называются противоположными. Отрезок, соединяющий противоположные вершины, называется диагональю параллелепипеда. Каждый параллелепипед имеет четыре диагонали.Диагоналями параллелепипеда АВСDА1В1С1D1 являются отрезки АС1, ВD1, СА1, 1.

Часто выделяют какие-нибудь две противоположные грани и называют их основаниями, а остальные грани – боковыми гранями параллелепипеда. Рёбра параллелепипеда, не принадлежащие основаниям, называются боковыми рёбрами.

Если в качестве оснований параллелепипеда АВСDА1В1С1D1 выбрать грани АВСD и А1В1С1D1, то боковыми гранями будут параллелограммы АВВ1А1, ВСС1В1, СDD1С1,  DА А1D1, а боковыми рёбрами отрезки АА1, ВВ1, СС1 и DD1.

Упражнения:

1. В тетраэдре DАВС  точки М, N, Q, Р середины отрезков В D, DС, АС, АВ. Найти периметр четырехугольника М NQР, если А D = 12 см, ВС = 14 см.


Дата добавления: 2019-09-13; просмотров: 458; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!