Использование свойств интеграла.
№1. Вычислите силу давления воды на вертикальный прямоугольный шлюз с основанием 18 м и высотой 6 м. [4]
Решение. Сила давления воды зависит от глубины х погружения площадки: P( x)= ax, где а – площадь площадки. Получаем
(т).
№2. Тело массой 1 движется с ускорением, меняющимся линейно по закону a ( t )=2t -1. Какой путь пройдёт тело за 4 единицы времени от начала движения t =0, если в начальный момент его скорость равнялась 2?
Решение. Скорость тела в любой момент времени t вычисляется по формуле
v=v0+at.
Используя данные задачи, получаем:
.
№3. Тело брошено с поверхности Земли вертикально вверх с начальной скоростью v 0 . Какова наибольшая высота, достигаемая телом? [5]
Решение. Скорость тела в любой момент времени t движения равна разности начальной скорости и скорости gt, вызванной ускорением, определяемым силой тяжести: v =v0-gt. Движение вверх будет происходить при v = v 0 - gt >0, т. е. при . Таким образом, максимальная высота полета равна
.
Введение новой переменной.
№1. Задан закон изменения скорости движения материальной точки по прямой: (время t в секундах, скорость v в метрах в секунду). Какой путь пройдёт точка за 13 с от начала движения (t =0)?
Решение. В качестве новой переменной введем величину, стоящую в скобках. Назовем её z,
z =2t +1.
При этом надо также от дифференциала dt перейти к дифференциалу dz. Получим
dz=2dt, dt = dz / 2.
Вычислим сначала неопределенный интеграл,
|
|
Таким образом,
м/c.
№2. Вычислить количество электричества, протекающее через цепь за промежуток времени [0,01; 1], если ток изменяется по формуле .
Решение. За элементарный промежуток времени протекает количество электричества
dq=I(t)dt.
В качестве новой переменной введем величину, стоящую в скобках.
.
Тогда dt= du.
Значит, общее количество электричества равно
.
№3. Точка движется по прямой. В начальный момент t =1 с её скорость равна 1 м/с, а затем уменьшается по закону . Найдите длину пути, пройденного точкой за 4 с от начального момента времени.
Интегрирование путем подстановки (внесением под знак дифференциала).
№1. Найти величину давления на полукруг, вертикально погруженный в жидкость, если его радиус равен R, а верхний диаметр лежит на свободной поверхности жидкости (рис.1); удельный вес жидкости равен γ. [6]
Решение. Проведем горизонтальную полоску на глубине х. Сила давления жидкости на эту полоску равна
.
Таким образом,
.
Заметим, что 2xdx = dx 2, отсюда
.
№2. Конец трубы, погруженной горизонтально в воду, может быть закрыт заслонкой. Определить давление, испытываемое этой заслонкой, если её диаметр равен 60 см, а центр находится на глубине 15 м под водой. [6]
|
|
Приложения интеграла в физике.
Рассмотрим несколько нетривиальных примеров применения интеграла в физике.
Нахождение силы.
№1. На прямой расположены материальная точка массы m и однородный стержень массы M и длины l. Точка удалена от концов стержня на расстояния c и c + l. Определить силу гравитационного притяжения между стержнем и точкой. [3]
Решение. Разобьем отрезок [c ; c + l] на большое число отрезков. Если отрезки эти малы, то массу каждого из них можно считать точечной и силу гравитационного притяжения между таким отрезком и массой m вычислять по закону всемирного тяготения. Если длина отрезка равна Δх, а расстояние его от начала координат равно х, то сила гравитационного притяжения равна
Δх.
Суммируя полученные для каждого отрезка значения силы гравитационного притяжения, мы получим представление искомой силы в виде суммы тем более точное, чем мельче отрезки, на которые мы разбивали отрезок [c ; c + l]. В пределе получим
.
№2. С какой силой полукольцо радиуса r и массы М действует на материальную точку массы m, находящуюся в его центре? [3]
Нахождение кинетической энергии.
№3. Вычислить кинетическую энергию диска массы М и радиуса R, вращающегося с угловой скоростью ω около оси, проходящей через его центр перпендикулярно к его плоскости. [6]
|
|
Решение. Масса кругового кольца толщины dr, находящегося на расстоянии r от центра диска, равна 2πρ rdr, где - поверхностная плотность. Линейная скорость υ=ω r кольца. Следовательно, его кинетическая энергия будет:
.
Поэтому кинетическая энергия диска равна
.
№4. Стержень АВ вращается в горизонтальной плоскости вокруг оси ОО' с угловой скоростью ω=10π рад/с. Поперечное сечение стержня S = 4 см2, длина его l = 20 см, плотность материала, из которого он изготовлен, γ= 7,8 • 103 кг/м3. Найти кинетическую энергию стержня. [3]
Решение. Кинетическая энергия тела, вращающегося вокруг неподвижной оси, равна , где ω – угловая скорость, а J – момент инерции относительно оси вращения.
Момент инерции стержня относительно оси равен Sγl 2 dl , отсюда кинетическую энергию стержня можно найти по формуле:
(Дж).
№5. Треугольная пластинка, основание которой а = 40 см, а высота h = 30 см, вращается вокруг своего основания с постоянной угловой скоростью ω=5π рад/с. Найти кинетическую энергию пластинки, если толщина ее d = 0,2 см, а плотность материала, из которого она изготовлена, γ= 2,2 • 103 кг/м3. [3]
|
|
Нахождение давления.
№6. Найти давление воды на плотину, если вода доходит до её верхнего края и если известно, что плотина имеет вид трапеции с высотой h, верхним основанием а и нижним основанием b.
Решение. Рассмотрим элементарный слой, находящийся на глубине х и имеющей высоту dx.
Легко доказать, что длина этого слоя равна
Поэтому его площадь dS равна
,
а давление dP на него равно
.
Всё давление на плотину выражается интегралом
.[4]
№7. . Вычислить силу давления воды на вертикальную плотину, имеющую форму трапеции, верхнее основание которой равно 70 м, нижнее 50 м, а высота 20 м. [4]
Нахождение работы.
№8. Найдите работу переменного тока, изменяющегося по формуле за промежуток времени , если сопротивление цепи равно R. [4]
Решение. Как известно из физики, в случае постоянного тока мощность выражается формулой . Поэтому, учитывая, что имеем:
.
№9. Два точечных электрических заряда +10-4 и -10-4 Кл находятся на расстоянии 10 см друг от друга. Найдите работу, необходимую для того, чтобы развести их на расстояние 10 км. [2]
Решение. Сила взаимодействия F между зарядами равна (a = kq 1 q 2, где Нм2/Кл2). Тогда работа этой силы, когда заряд q 1 неподвижен, а заряд q 2 передвигается по отрезку [0,1; 10000] м, равна
.
№10. Какую работу требуется выполнить, чтобы с помощью ракеты тело массы m поднять с поверхности Земли, радиус которой R, на высоту h? [4]
Решение. На тело массы m по закону всемирного тяготения действует сила , где M – масса Земли, а r – расстояние тела от центра Земли. Поэтому
.
На поверхности же Земли, т. е. при r = R имеем F = mg , т. е. и . Отсюда .
№11. . Найти работу, выполняемую при переносе материальной точки, имеющей массу m, из A ( a ) в B ( b ), если притягивающая её по закону Ньютона точка имеет массу μ и находится в начале координат. [4]
Решение. По закону Ньютона сила тяготения равна , где γ – гравитационная постоянная, а r – расстояние между точками. Тогда получаем
.
№12. Из цистерны, имеющей форму прямого кругового конуса радиусом основания R и высотой H, выкачивают воду через вершину конуса. Найдите совершаемую при этом работу. Найдите числовое значение работы при R =3 м, H =5 м, считая плотность воды ρ=1 г/см3.
Заключение
В заключение подведем некоторые итоги проделанной работы.
Были проанализированы различные учебники по теме, рассмотрены различные подходы к изложению исследуемого материала, вследствие чего выделены достоинства и недостатки каждого подхода, на основании этого и в силу необходимости полноценного изучения важнейших элементов интегрального исчисления в основной школе, а также в силу недостаточной разработанности методики преподавания этого материала с помощью использования физических моделей в школьном курсе математики, была разработана своя методика, также имеющая как свои недостатки, так и достоинства.
Среди недостатков выделим отсутствие универсальности у данной методики. Данное изложение материала на уроках возможно на сегодняшний день только в классах с углубленным изучением математики или физики, либо на факультативных занятиях.
Достоинствами данной методики являются
1) прикладная значимость материала (что в некоторых случаях облегчит работу и учителю физики);
2) эффективность обучения (за счет приведения практических примеров);
3) удовлетворение познавательных интересов учащихся.
Необходимо отметить, что основные цели и задачи, поставленные нами, были достигнуты. Тема «Интеграл», изучаемая с помощью разработанной методики, наиболее выпукло и ярко демонстрирует связь математики с физикой, позволяет полноценно и осознанно усвоить материал по теме.
В данной работе представлены как теоретический материал, так и практические упражнения. Физические модели и явления, рассматриваемые во второй главе, не выходят за рамки школьной программы по физике, а, следовательно, не требуют от учащихся дополнительных знаний по предмету, что удовлетворяет принципу доступности изложения материала, который в свою очередь сочетается с принципом достаточно высокого уровня трудности. Также в данной работе реализованы принципы наглядности (чертежи, графики к задачам), систематичности и последовательности в обучении.
Использование данной методики формирует такие специальные качества, как умение строить математические модели реальных процессов и явлений, исследовать и изучать их, а, следовательно, способствует развитию мышления, памяти, внимания и речи учащихся.
У учителя при использовании данной методики есть возможность выбора пути изложения материала в соответствии с особенностями мышления и восприятия учащихся, а также в соответствии с их подготовкой по математике и физике. Например, учитель классов курса А может взять лишь некоторые факты данной методики, учитель же классов с углубленным изучением математики и физики может использовать всю методику целиком. В любом случае, данная работа может помочь каждому учителю в преподавании темы «Интеграл».
На мой взгляд, применение физических моделей при введении понятия интеграла, рассмотрении его свойств, отработке техники интегрирования и изучении приложений способствует осознанному качественному усвоению школьниками этого материала, развитию правильного представления об изучаемом понятии, его огромной значимости в физике, формированию мировоззрения учащихся.
Библиография
1. Алимов, Ш. А. Алгебра и начала анализа [Текст]: Учеб. для 10-11 кл. сред. шк./ Ш. А. Алимов, Ю. М. Колягин, Ю.В. Сидоров и др. - М.: Просвещение, 1993. – 254 c.
2. Башмаков, М. И. Алгебра и начала анализа [Текст]: Учеб. для 10-11 кл. сред. шк. - М.: Просвещение, 1992. – 351 с.
3. Берман, Г. Н. Сборник задач по курсу математического анализа [Текст]: Уч. пособие. - СПб.: Изд-во «Профессия», 2001. – 432 с.
4. Виленкин, Н. Я., Куницкая, Е. С., Мордкович, А. Г. Математический анализ. Интегральное исчисление [Текст]: Уч. пособие для студентов-заочников II курса физико-математических факультетов педагогических институтов. - М.: Просвещение, 1979. – 175 с.
5. Задачи как средство обучения алгебре и началам анализа в X классе [Текст]: Уч. пособие// Сост. Е. С. Канин. – Киров: Редакционно-издательский совет Кировского ГПИ имени В. И. Ленина, 1985. – 92 c.
6. Задачник по курсу математического анализа [Текст]: Уч. пособие для студентов заочн. отделений физ.-мат. фак-тов пединститутов. Ч. I// Под ред. Н. Я. Виленкина. – М.: Просвещение, 1971. – 343 с.
7. Зельдович, Я. Б. Высшая математика для начинающих и её приложения к физике [Текст]: Уч. пособие для физико-математических средних школ и проведения факультативных занятий. – М.: Наука, 1970. – 560 с.
8. Колмогоров, А. Н. Алгебра и начала анализа [Текст]: Учеб. для 10-11 кл. общеобразоват. учреждений/ А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др. – М.: Просвещение, 1998. – 365 c.
9. Модели и моделирование в методике обучения физике [Текст]: Материалы докладов республиканской научно-теоретической конференции. – Киров: Изд-во Вятского ГПУ, 2000. – 90 с.
10. Мордкович, А. Г. Алгебра и начала анализа [Текст]: Учеб. для 10-11 кл. общеобразоват. учреждений. Ч. I. – М.: Мнемозина, 2003. – 375 с.
11. Никольский, С. М. Алгебра и начала анализа [Текст]: Учеб. для 11 класса общеобразоват. учреждений/ С. М. Никольский, М. К. Потапов. - М.: Просвещение, 2003.
Приложение
Опытное преподавание
Конспект факультативного занятия
Тема: Свойства интеграла.
Класс: 11 класс.
Триединая цель:
I. Образовательный аспект:
1) изучить свойства интеграла, продемонстрировать учащимся применение физических моделей при изучении свойств интеграла (межпредметную связь математики и физики);
2) научить применять свойства при вычисления интеграла, при решении задач математики и физики.
II. Развивающий аспект:
3) создать условия для развития практического, абстрактного и логического мышления учащихся.
III. Воспитательный аспект:
4) создать условия для осмысления ценности математических и физических знаний как средства познания мира.
Ожидаемый результат факультатива:
Репродуктивный уровень: знание свойств интегралов, умение применять их для вычисления интеграла.
Конструктивный уровень: умение применять свойства интеграла для решения простейших математических и физических задач.
Творческий уровень: умение применять свойства интеграла для решения нетривиальных текстовых задач с математическим и физическим содержанием.
Методы обучения, применяемые на факультативе:
· Объяснительно-иллюстративный
· Частично-поисковый
Формы организации познавательной деятельности учащихся:
· Фронтальная
· Индивидуальная
Формы контроля:
Контроль со стороны учителя
План:
I. Организация деятельности (1-2 мин.).
II. Актуализация знаний (2-3 мин.).
III. Изучение нового материала (25 мин.).
IV. Решение задач (10-12 мин.).
Литература: [2], [8].
Содержание.
Мотивация: Рассмотрим задачу. Скорость тела задается формулой v ( t )= t 3 -2 t 2 -1 м/с. Найти путь, пройденный телом за первые 10 с после начала движения.
Решение. Путь пройденный телом за первые 10 с после начала движения вычисляется по формуле
Как же вычислить интеграл от такой функции?
Для этого рассмотрим вспомогательную задачу.
Пусть к материальной точке, движущейся по оси х, приложены две силы F 1 ( x ) и F 2 ( x ), направленные по одной прямой в одну сторону. Под действием этих сил материальная точка переместилась из точки а в точку b, при этом работа каждой силы на этом отрезке вычисляется по формулам: и . Тогда общая работа, совершенная обеими силами равна
. (1)
С другой стороны, если к телу приложены две силы F 1 ( x ) и F 2 ( x ), направленные по одной прямой в одну сторону, то их равнодействующая F ( x ) находится по формуле F ( x )= F 1 ( x )+ F 2 ( x ). Работа этой силы равна
. (2)
В силу равенства левых частей в формулах (1) и (2), получаем равенство правых, т. е.
.
Нетрудно показать, что данное свойство выполняется для любого конечного числа сил, действующих на точку и направленных по одной прямой в одну сторону. Это свойство показывает, что интеграл суммы нескольких слагаемых разбивается на сумму интегралов отдельных слагаемых.
Попробуйте самостоятельно доказать, что если к телу приложены две силы F1( x) и F2( x), направленные по одной прямой, но в противоположную сторону, то тогда верно следующее равенство
.
Тогда, возвращаясь к исходной задаче, можно сделать следующую запись
.
Как видно из формулы под знаком интеграла остались постоянные множители.
Теперь проверим можно ли за знак интеграла вынести постоянный множитель.
Вспомним рассмотрение задачи о давлении жидкости на прямоугольную стенку бассейна с основанием а, в результате решения которой была получена формула
, (3)
где а – величина постоянная, равная ширине стенки бассейна.
Разделим прямоугольную стенку бассейна на а прямоугольников с основанием, равным единице. Тогда весь бассейн также разделится на а равных частей, при чем давление на прямоугольную стенку с основанием, равным единице в каждой части будет вычисляться по формуле . Учитывая, что во всех частях давление одно и то же и всего частей а, то общее давление равно
. (4)
В силу равенства левых частей в формулах (3) и (4), получаем равенство правых, т. е.
.
Данное равенство можно обобщить на произвольную непрерывную функцию F( x) и произвольный отрезок [a; b], т. е.
.
Данное свойство показывает, что постоянный множитель можно выносить за знак интеграла.
Тогда применяя это свойство к решению исходной задачи, получаем
.
Выведенные формулы называются свойствами линейности интеграла.
Но интеграл обладает и другими свойствами, которые необходимо знать для решения задач. Одно из таких свойств выглядит следующим образом
.
Рассмотрим доказательство данного свойства на задаче о перемещении точки [с.18].
При введении интеграла рассматривается случай, когда нижний предел интегрирования меньше верхнего. Но определенный интеграл можно обобщить и на случай, когда верхний предел меньше нижнего. В этом случае обратимся к определению интеграла как суммы. Разбивая отрезок от [a ; b] промежуточными значениями t 1 , t 2 , …, tn -1, убедимся, что все Δt теперь отрицательны. Легко убедиться, что
, (5)
так как при любом разбиении отрезка [a ; b] соответствующие суммы будут отличаться знаками всех Δt во всех слагаемых.
Следующее свойство называется свойством аддитивности интеграла
.
Докажем свойство на примере задачи о перемещении точки [с.18].
Существенное свойство интеграла состоит в том, что область интегрирования можно разбить на части: путь, пройденный за время от а (начала) до b (конца), можно представить
как сумму пути, пройденного за время от a до c (промежуточного момента) и от c до b
. (6)
При помощи соотношения (5) можно распространить формулу (6) и на случай, когда с не лежит внутри промежутка [a ; b].
Пусть c > b > a. Тогда очевидно
.
Перенесем последнее слагаемое в левую часть и воспользуемся (5)
. (7)
Таким образом, получили равенство (7), в точности совпадающее с (6).
Аналогично можно рассмотреть случаи другого расположения чисел a , c , b (их всего шесть вариантов), которые нужно самостоятельно разобрать и убедиться, что формула (6) оказывается верной во всех этих случаях, т. е. независимо от взаимного расположения чисел a , c , b.
Ещё одно свойство интеграла звучит так:
если на отрезке [a ; b], то .
Вспомним формулу для вычисления массы стержня по известной плотности.
.
Как известно, плотность вещества – это физическая величина, показывающая, чему равна масса вещества в единице объема, следовательно, это величина неотрицательная. С другой стороны масса вещества есть также величина неотрицательная. Таким образом, получаем: если подынтегральная функция неотрицательна на рассматриваемом отрезке, то
.
Далее учащимся для самостоятельного решения предлагаются следующие задачи:
1) на вычисление интеграла ([2] стр.264 №11 8)-9), 15)-16), 23));
2) с физическим содержанием ([8] стр.193 №373, 374, 376; [2] стр.269 №3)
Замечание. Данная методика изучения свойств интеграла возможна при условии, что учащиеся знают все используемые при доказательствах формулы. Этого можно добиться, вводя понятие интеграла следующим образом. Методом дифференциалов, а конкретно на задаче о перемещении точки вводится понятие интеграла, затем этим же методом выводится формула для вычисления массы стержня по известной плотности. Далее поясняется, что интегралы можно приближенно вычислять с помощью составления интегральных сумм, и именно с этим методом исторически связано появление понятия интеграл. Этот метод рассматривается на задаче о давлении жидкости на стенку и на задаче о работе силы.
Анализ. Данные свойства интеграла, как известно, можно вывести и другим способом (например, с помощью формулы Ньютона-Лейбница и с использованием свойств площади криволинейной трапеции). Но используемые в доказательствах физические модели, во-первых, наглядны, а, следовательно, легче воспримутся учащимися, позволят лучше запомнить свойства и оставят в памяти учащихся наглядное представление о каждом из свойств. Во-вторых, при соответствующей методике введения понятия интеграла, данная методика введения свойств заставляет постоянно повторять пройденное, вспоминать выведенные при введении формулы (а, следовательно, и сами формулы лучше отложатся в памяти учащихся). Все это удовлетворяет принципу прочности знаний и наглядности в обучении. Учитывая, что понятие интеграла вводилось через физические модели, а свойства вводятся аналогично, то при данной методике выполняется и принцип последовательности и систематичности в обучении, и принцип доступности. Выше описаны ценные стороны факультатива, но есть и недостаток – данная методика подходит не для всех учащихся. Например, в гуманитарных классах она не применима, данным классам достаточно иметь общее представление об интеграле.
Дата добавления: 2019-07-15; просмотров: 244; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!