Силы и моменты в механике сплошной среды



Силы, распределенные по объему W, называются объемнымиили массовыми. Они обозначаются  и относятся к элементу массы Dm = rDW. Т.е. сила, действующая на элемент массы, равна Dm = rDW, следовательно, размерность  совпадает с размерностью ускорения. Примерами массовых сил могут служить гравитационные, электромагнитные, инерционные.

Силы, распределенные по поверхности S, называются поверхностными. Поверхностные силы будем обозначать вектором  и относить к элементу поверхности DS сплошной среды. Т.е.  имеет размерность давления. Такие силы возникают, например, на свободной поверхности среды, при взаимодействии среды с твердыми телами, а также внутри среды (внутренние поверхностные силы).

Внутренние поверхностные силы необходимо рассматривать при изучении движения отдельных частиц среды с учетом их механического влияния друг на друга. Так, например, происходит при относительном движении двух соседних соприкасающихся частиц. Это явление может наблюдаться в любом месте сплошной среды, причем для бесконечно малых частиц поверхности соприкосновения dS можно построить любым образом. Тогда и , зависящее от такого выбора, можно определить по-разному в зависимости от dS, т.е. ориентации нормали этой площадки, поэтому такое взаимодействие обозначим вектором S. В силу третьего закона Ньютона на одну из пары соприкасающихся частиц действует сила SdS, на другую – SdS. Однако если соприкосновения нет, т.е. если движение имеет разрыв каких-то своих характеристик, то последнее условие может нарушаться.

Вектор S в общем случае не перпендикулярен к dS, поэтому различают нормальную составляющую pSn, называемую нормальным напряжением или нормальным давлением, и тангенциальную pS t, называемую касательным напряжением или внутренним трением: SdS= pSn dS + pS tt dS.

 

Свойство вектора S рассмотрим с помощью представления бесконечно малой частицы в виде тетраэдра с ребрами, параллельными осям координат (рис. 2). Площади граней такого тетраэдра равны S, S ×cos( ,x), S ×cos( ,y), S ×cos( ,z).

Массовые силы будем считать постоянными во всем объеме W = hS/3 бесконечно малой частицы, а поверхностные силы 1, 2, 3, S постоянными на своих гранях. Это позволит применить к частице начало Даламбера из теоретической механики:

откуда, сократив на S, и перейдя к пределу при h ® 0, получаем инвариантное к выбору площадки равенство:

                    .                         (1.20)

Это означает, что существует некоторый объект P, компонентами

которого можно рассматривать векторы , или даже элементы матрицы (pij) – матрицы из компонент векторов . Объект P с компонентами pij называется тензором внутренних напряжений.

Равенство (1.20) позволяет применить теорему Остроградского-Гаусса к расчету поверхностных сил:

                                       (1.21)

Кроме сил на каждую частицу жидкости могут действовать и моменты. Примером может служить момент магнитного поля Земли, действующий на каждый элемент стрелки компаса. Такой момент, который действует на элемент массы Dm, будем обозначать . Его принято называть массовой парой (мас­совым моментом). Размерность  совпадает с размерностью квадрата скорости.

Момент, который действует на элемент поверхности DS, будем обозначать . Он называется поверхностной парой (поверхност­ным моментом) и имеет размерность силы, деленной на длину.


Дата добавления: 2019-02-12; просмотров: 290; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!