ДОКТОР, ВЫ ПРОГОНИТЕ МЕНЯ, ЕСЛИ МНЕ НЕ СТАНЕТ ЛУЧШЕ? 18 страница



Близилась к завершению еще одна эпоха в онкологии. Эта дисциплина уже отвернулась от своей бурной юности, от увлечения универсальными решениями и радикальными способами лечения и теперь примеривалась к фундаментальным вопросам о раковых заболеваниях. Какие принципы лежат в основе модели поведения той или иной формы рака? Что между ними общего, а чем рак молочной железы отличается от рака легких или простаты? Способны ли общие закономерности — или отличия — создать новые методы, с помощью которых люди научатся лечить или предотвращать рак?

Поединок с раком обратился внутрь, к фундаментальной биологии, базовым механизмам. Для ответа на все эти вопросы нам тоже следует обратиться внутрь, вернуться к раковой клетке.

 

 

Часть пятая

ИСКАЖЕННАЯ ВЕРСИЯ НАС САМИХ

 

Напрасно говорить о лечении или думать о лекарствах, покуда не рассмотрим причины… методы лечения могут оказаться несовершенны, убоги и бесцельны там, где причины не отыскали.

Роберт Бертон. Анатомия меланхолии, 1893 г.

 

Нельзя провести эксперимент и увидеть, что именно вызывает рак. Эта проблема неразрешима и относится к тому сорту вещей, которые ученым делать не дано.

Дж. Герман, онколог, 1978 г.

 

Какие «почему» кроются за этими происшествиями?

Пейтон Раус о тайне происхождения рака, 1966 г.

 

Единая причина

 

Весна 2005 года — поворотный момент в нашей онкологической стажировке. Путям стажеров суждено разделиться. Трое из нас продолжат работу в клинике, сосредоточившись на клинических исследованиях и ежедневном приеме пациентов. Четверо отправятся в исследовательские лаборатории, оставив за собой лишь несколько часов еженедельно в клинике и горстку пациентов.

Выбор между этими путями делается инстинктивно. Некоторые мысленно видят себя клиницистами, другие — учеными-исследователями. Мои устремления слегка изменились с первого дня интернатуры. Клиническая медицина не оставляет меня равнодушным, но я — лабораторная крыса, бродячее существо, меня притягивает фундаментальная биология рака. Поразмыслив, какой тип рака выбрать для лабораторного исследования, я понимаю, что меня влечет лейкемия. Лабораторию выбираю самостоятельно, а вот тема моего исследования определена пациенткой. Болезнь Карлы оставила заметный отпечаток на моей жизни.

Однако в сумерках полного погружения в больничные будни подчас выпадают моменты, напоминающие о том, как удивительна и увлекательна клиническая медицина. Вот я сижу поздним вечером в дежурной, больница вокруг затихла, слышится лишь металлическое позвякивание раскладываемых перед ужином столовых приборов. Воздух за окном набух ожиданием близкого дождя. Нас семеро, мы все стали близкими друзьями и теперь составляем списки пациентов для передачи новым стажерам. Лорен читает свой список вслух, называя имена своих подопечных, умерших за два первых года практики. В порыве внезапного вдохновения после каждого имени она делает паузу, а потом прибавляет пару коротких фраз, будто эпитафию.

Это своего рода импровизированная поминальная служба. В комнате что-то неуловимо меняется. Я присоединяюсь к Лорен — называю имена моих умерших пациентов и прибавляю пару-другую фраз в память о них.

 

Кеннет Армор, шестьдесят два года, специалист по внутренним болезням, рак желудка. В последние дни мечтал о коротком отпуске вместе с женой и о возможности поиграть со своими кошками.

Оскар Фишер, тридцать восемь лет, мелкоклеточный рак легких. Умственно неполноценный с рождения, любимец матери. Когда он умер, она вложила ему в пальцы четки.

 

 

В тот вечер я засиживаюсь над своим списком, до глубокой ночи вспоминая имена и лица. Как увековечить своих пациентов? Эти люди стали моими друзьями, собеседниками, учителями — моей приемной семьей. Я стою у стола, словно на похоронах; в ушах шумит, глаза обжигают жаркие слезы. Обведя взглядом комнату и пустые столы, я вдруг осознаю, как же сильно изменили нас два этих коротких года. Самоуверенный, честолюбивый и сообразительный Эрик стал тише и самоуглубленнее. Эдвин, в первый месяц до крайности жизнерадостный и оптимистичный, открыто говорит о горе и смирении. Рик, по образованию химик-органик, до того увлекся клинической медициной, что сомневается, возвращаться ли ему в лабораторию. Лорен, замкнутая и зрелая, оживляет свои проницательные суждения шутками про онкологию. Столкновение с раком обтесало нас всех — сгладило и отполировало, точно камни в реке.

 

* * *

 

Через несколько дней я встречаюсь с Карлой в процедурной. Она болтает с медсестрами — небрежно, как с давними подругами. Издалека она неузнаваема. Смертельная бледность, памятная мне по первому дню Карлы в клинике, сменилась легким румянцем. Синяки на руках от бесконечных капельниц исчезли. Ее дети вернулись к обычным занятиям, муж снова вышел на работу, мать спокойно живет во Флориде. Жизнь Карлы почти возвратилась к норме. Она рассказывает мне, что ее дочурка иногда просыпается от кошмаров. Я интересуюсь, не след ли это недавней травмы из-за годового испытания Карлы, но пациентка уверенно качает головой: «Нет. Это просто детские страхи, чудища в темноте».

Со времени первоначальной постановки диагноза прошло чуть больше года. Карла все еще принимает таблетки 6-меркаптопурина и метотрексата — лекарство Бурченала и лекарство Фарбера, комбинация, предназначенная блокировать деление остаточных раковых клеток. Вспоминая худшие дни своего недуга, она передергивается от отвращения, однако в ней чувствуется что-то нормализующее и исцеляющее. Чудовища, осаждавшие ее саму, исчезли, как старые синяки.

Результаты анализов Карлы, поступившие из лаборатории, совершенно нормальны. Ремиссия продолжается. Я изумлен и восхищен новостями, однако преподношу их осторожно, как можно нейтральнее. Подобно всем пациентам, Карла с глубокой подозрительностью относится к чрезмерному энтузиазму: взлетает на седьмое небо от радости крошечной победы тот врач, который готовит пациента к неминуемому поражению. Однако на сей раз никаких причин для подозрительности нет. Я сообщаю ей, что анализы выглядят нормально и что сегодня тестов не требуется. Карла знает: при лейкозе лучшие новости — это отсутствие новостей.

 

* * *

 

Позднее в тот вечер, закончив с записями, я возвращаюсь в лабораторию. Она гудит, точно пчелиный улей. Постдоки и студенты-старшекурсники роятся вокруг микроскопов и центрифуг. В общем гуле изредка различаются медицинские слова и фразы, но в общем и целом лабораторный жаргон сильно отличается от медицинского диалекта. Все равно что переехать в соседнюю страну — с похожим стилем жизни, но совершенно другим языком.

— Но на ПЦР лейкозной клетки фрагмент должен был выделиться.

— А по какому гелю ты прогонял?

— Агароза, четыре процента.

— И РНК при центрифугировании не разложилась?

Я вытаскиваю из холодильника плашку с клетками. В плашке триста восемьдесят четыре крохотные лунки — в каждую еле-еле влезет два зернышка риса. В каждую лунку я рассадил двести человеческих лейкозных клеток, а потом добавил то или иное химическое вещество из огромной коллекции еще не испытанных препаратов. Параллельно я посадил и «близнецовую» плашку, где в каждой лунке находится по двести нормальных стволовых клеток крови с добавкой тех же веществ.

Несколько раз в день автоматическая камера, специально предназначенная для микроскопии, фотографирует все лунки в обеих плашках, а компьютерная программа подсчитывает количество лейкозных и нормальных стволовых клеток. Цель эксперимента — поиск химических веществ, убивающих лейкозные клетки, но щадящих стволовые, то есть специфической терапии лейкозов.

Я забираю из одной лунки несколько миллилитров среды с лейкозными клетками и рассматриваю их под микроскопом. Они выглядят гротескно: раздутые, с увеличенными ядрами и тонким ободком цитоплазмы — характерный признак клетки, всей сутью нацеленной на то, чтобы делиться, делиться и делиться без остановки, одержимо и патологически. Эти лейкозные клетки поступили в лабораторию из Национального института онкологии, где их культивируют и изучают вот уже почти тридцать лет. То, что эти клетки продолжают делиться с непристойной плодовитостью — лишнее доказательство устрашающей силы заболевания.

Технически выражаясь, эти клетки бессмертны. Женщина, от которой они были взяты, умерла тридцать лет назад.

Вирхов обнаружил эту силу пролиферации — то есть размножения клеток — еще в 1858 году. Рассматривая под микроскопом образцы раковых тканей, он понял, что рак — это гиперплазия клеток, непомерное патологическое размножение. Он определил и описал эту главную аномалию, однако не сумел постичь ее причины. Вирхов считал, что неумеренное размножение клеток, ведущее к их разрастанию и озлокачествлению, вызывается воспалением, естественной реакцией организма на повреждение, проявляющейся в покраснении и распухании пораженного участка и в активации иммунных систем организма. Он был почти прав — хроническое воспаление, тлеющее в организме несколько десятилетий кряду, вызывает рак (например, хроническая вирусная инфекция гепатита вызывает рак печени), — но упустил главную причину. Воспаление заставляет клетки делиться в ответ на повреждение организма, и это спровоцированное деление вызвано внешним фактором, например, бактерией или вирусом. При раке же раковая клетка приобретает способность делиться автономно, подчиняясь лишь внутренним сигналам. Вирхов относил рак на счет нарушения внешней среды вокруг клетки. Он не понял, что истинное нарушение происходит внутри самой раковой клетки.

В двухстах милях к югу от берлинской лаборатории Вирхова Вальтер Флемминг, пражский биолог, пытался выяснить природу аномального клеточного деления — правда, выбрав в объекты не человеческие клетки, а икринки саламандр. Чтобы понять механизм клеточного деления, Флеммингу понадобилось визуализовать внутреннюю анатомию клетки. Для этого он в 1897 году красил делящиеся клетки саламандр анилином, красителем общего действия, используемым еще Эрлихом. При окрашивании в ядрах стали видны голубоватые нитчатые структуры, которые перед делением клетки сгущались и уплотнялись, становясь ярче и отчетливее. Флемминг назвал эти синеватые структуры хромосомами — «окрашенными тельцами». Он обнаружил, что клетки разных видов животных имеют строго определенное количество хромосом (у людей сорок шесть, у саламандр четырнадцать). Во время клеточного деления хромосомы удваивались и поровну распределялись между дочерними клетками, тем самым поддерживая свое число неизменным от поколения к поколению. Однако Флеммингу не удалось понять, какие именно функции выполняют в клетках эти загадочные «окрашенные тельца».

Нацель Флемминг свои объективы не на икринки саламандр, а на человеческие образцы, возможно, ему удалось бы сделать следующий концептуальный шаг в понимании аномальности раковых клеток. Этот логический ход совершил бывший ассистент Вирхова, Давид Пауль фон Ганземан. Исследуя под микроскопом раковые клетки, окрашенные анилином, фон Ганземан обратил внимание на то, что Флемминговы хромосомы в этих клетках ведут себя аномально — расщепленные, обтрепанные, распавшиеся на несколько частей, соединившиеся заново, утроенные и учетверенные.

Наблюдения фон Ганземана позволяли сделать важнейшие выводы. Большинство ученых продолжали искать в раковых клетках каких-то паразитов, да и теория Беннетта о спонтанном нагноении все еще завораживала умы патологов. Однако фон Ганземан предположил, что подлинная аномальность кроется именно в структуре внутренних телец раковых клеток — в хромосомах, а значит, и в самих раковых клетках.

Однако причина это — или же результат? Ракли изменил структуру хромосом, или же изменения структуры хромосом привели к возникновению рака? Фон Ганземан наблюдал корреляцию между хромосомными изменениями и раком, и ему требовался эксперимент, который позволил бы определить, где причина, а где следствие.

Недостающее экспериментальное звено явилось из лаборатории Теодора Бовери, еще одного бывшего ассистента Вирхова. Подобно Флеммингу, работавшему с икринками саламандр, Бовери предпочитал изучать простые клетки простых организмов, икринки морских ежей, которые он собирал на продуваемых ветрами пляжах близ Неаполя. Яйцеклетки у морских ежей, как и у большинства животных, строго моногамны: как только сперматозоид проникнет туда, яйцеклетка мгновенно ставит барьер, препятствующий проникновению всех прочих. После оплодотворения яйцеклетка делится, образуя сначала две, а потом четыре клетки — каждый раз удваивая хромосомы и аккуратно распределяя их между дочерними клетками. Чтобы понять механизм этого естественного разделения хромосом, Бовери изобрел в высшей степени неестественный эксперимент. Вместо того чтобы позволить яйцеклетке оплодотворяться только одним сперматозоидом, он при помощи химических препаратов удалил ее внешнюю оболочку и оплодотворил двумя сперматозоидами сразу.

Как обнаружил Бовери, множественное оплодотворение влекло за собой полнейший хромосомный хаос. В результате проникновения в яйцеклетку двух сперматозоидов клетка начинала делить хромосомы на три части — что совершенно невозможно сделать поровну. Яйцеклетка морского ежа, неспособная нормально распределить хромосомы по дочерним клеткам, приходила в полнейшее внутреннее расстройство. Отдельные клетки, которые получали правильную комбинацию из всех тридцати шести хромосом, развивались нормально. Клетки, получившие ущербную комбинацию, либо не могли закончить деления, либо вообще не пробовали делиться и умирали. Бовери сделал вывод: должно быть, хромосомы переносят какую-то информацию, жизненно важную для нормального развития и размножения клеток.

Это заключение позволило Бовери выдвинуть смелую, хотя, пожалуй, слегка притянутую за уши гипотезу касательно природы главной аномальности раковых клеток. Поскольку в раковых клетках наблюдались поразительные нарушения хромосом, Бовери предположил, что подобная хромосомная аномалия и является причиной характерного для рака патологического деления клеток.

Бовери поймал себя на том, что невольно возвращается к Галену, к старой теории, что все типы раков объединены одной и той же аномальностью — «единая причина карцином», как назвал эту теорию Бовери. Раки, писал он, вовсе не являются «неестественной группой разнородных заболеваний». Нет, за всеми ними стоит одно и то же общее свойство, единая аномалия, причиной которой служат аномальные хромосомы, а значит, это внутренняя аномалия, присущая любым раковым клеткам. Бовери не мог указать конкретно, в чем заключается природа этого глубокого внутреннего нарушения, однако именно оно, считал он, и является «единой причиной карцином» — все дело не в хаосе черной желчи, а в хаосе синих хромосом.

В 1914 году Бовери опубликовал свою хромосомную теорию рака в изящном научном памфлете под названием «Касательно природы злокачественных опухолей» — шедевре фактов, фантазии и вдохновенных догадок, сшивших в единую ткань морских ежей и злокачественность. Однако теория Бовери столкнулась с неожиданной проблемой, с противоречащим фактом, который никак не удавалось объяснить. В 1910 году, за четыре года до выхода памфлета Бовери, Пейтон Раус, сотрудник института Рокфеллера, продемонстрировал, что рак у кур возникает под воздействием вируса, получившего название вируса саркомы Рауса, или ВСР.

Однако в качестве возбудителей заболевания вирус саркомы Рауса и хромосомы Бовери были совершенно несовместимы. Вирус — это патоген, внешний фактор, вторгшийся в клетку извне и чужеродный ей. А хромосомы — внутренняя структура, присущая самой клетке. Две противоположности никак не могут притязать на роль «единой причины» одного и того же заболевания. Как внутренний фактор, хромосома, и внешний возбудитель инфекции, вирус, могут вызывать одно и то же заболевание — рак?

В отсутствие конкретных доказательств той или иной теории теория вирусного происхождения рака казалась и привлекательнее, и правдоподобнее. Вирусы, впервые выделенные в 1898 году как микроскопические инфекционные частицы, вызывающие заболевания у растений, стали все чаще выявляться причинами самых разнообразных болезней и у людей, и животных. В 1909 году, за год до того как Раус получил вирус, вызывающий рак, Карл Ландштейнер предположил, что другой вирус является причиной полиомиелита. К началу 1920-х годов были выделены и культивированы в лабораторных условиях вирусы коровьей оспы и герпеса человека, что еще сильнее скрепило связь между вирусами и болезнями людей и животных.

Несомненно, к вере в вирусную природу рака примешивалась и надежда на исцеление. Если причина рака носит внешний, инфекционный характер, то и возможность найти от него лекарство представляется куда более вероятной. Как показал Дженнер, вакцинация вирусом коровьей оспы предотвращала куда более опасную натуральную оспу. Открытие Раусом вируса, вызывающего рак — пусть даже и у кур, — немедленно наводило на мысль о вакцине против рака. Напротив, теория Бовери о том, что рак вызывается некой таинственной проблемой, скрывающейся в ниточках хромосом, покоилась на весьма шатких теоретических доказательствах и не предлагала никакой надежды на исцеление.

 

Покуда понимание механизмов рака колебалось в неизвестности между вирусами и хромосомами, в биологии начала двадцатого века гремела революция в понимании функционирования нормальной клетки. Семена этой революции посеял застенчивый близорукий монах из захолустной австрийской деревушки Брюнне (ныне город Брно в Чехии), увлекавшийся выведением гороха. В начале 1860-х годов Грегор Мендель в одиночку определил у чистосортных растений несколько характеристик, отличающихся четким наследованием: расцветка цветов, структура поверхности горошин и высота самого растения. Скрещивая при помощи крошечного пинцета высокие растения с низкими или же растения с синими цветками и растения с зелеными цветками, Мендель наткнулся на поразительный феномен. При скрещивании низких растений с высокими вовсе не получалось растений средней высоты — получались неизменно высокие. А при скрещивании гороха с морщинистыми семенами и гороха с гладкими семенами горошины всегда получались морщинистыми.

Эти эксперименты Менделя позволяли сделать далеко идущие выводы: наследственные черты, предположил он, передаются в виде отдельных и неделимых факторов. Биологические организмы переносят от клетки к ее потомкам «инструкции» в виде подобных единиц информации.

Мендель визуализовал эти свойства или черты в виде описательных признаков: цвет, структура поверхности или высота растения, передающиеся от поколения к поколению. Он не мог увидеть или вычислить, что именно в растительной клетке является переносчиком информации. Примитивный световой микроскоп, едва позволявший заглянуть внутрь клетки, не в состоянии был выявить скрытый в ней механизм наследования. Мендель даже не придумал никакого названия для обнаруженных им единиц наследственности; спустя десятилетия, в 1909 году, ботаники окрестили их генами. Однако название не предлагало никакого нового объяснения структуры или механизма работы генов. Исследования Менделя затронули провокационный вопрос, остававшийся без ответа полвека: какова вещественная, физическая форма воплощения этих генов — единиц наследования — в клетке?

В 1910 году Томас Хант Морган, эмбриолог из Колумбийского университета в Нью-Йорке, наконец ответил на этот вопрос. Подобно Менделю, Морган был пылким селекционером, только разводил не горох, а плодовых мушек, дрозофил, сотнями выращивая их на подгнивших бананах в «Мушиной комнате» на окраине университетского кампуса. Как и Мендель, он, в свою очередь, обнаружил, что наследственные признаки передаются в поколениях мушек неделимыми единицами — например, цвет глаз и узор на крылышках передавались от родителей к отпрыскам в чистом виде, не смешиваясь.


Дата добавления: 2019-02-12; просмотров: 78; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!