ДОКТОР, ВЫ ПРОГОНИТЕ МЕНЯ, ЕСЛИ МНЕ НЕ СТАНЕТ ЛУЧШЕ? 21 страница



В середине 1970-х годов Бишоп и Вармус начали при помощи такой склеивающей реакции искать гомологи гена src. Поскольку это вирусный ген, они рассчитывали найти в нормальных клетках лишь небольшие его кусочки и фрагменты — предшественников и дальних родственников вызывающего рак гена src. Однако вскоре охота приняла загадочный оборот. Заглянув в нормальные клетки, Бишоп с Вармусом не обнаружили там генетических кузенов src в пятом или шестом колене. Они нашли прочно обосновавшуюся в геноме нормальной клетки почти идентичную версию вирусного src.

Работая в сотрудничестве с Деборой Спектор и Домиником Стехелином, они проверили другие клетки, где снова выявился ген src: в утиных клетках, в гусиных клетках и в перепелиных тоже. Близкородственные гомологи этого гена были раскиданы по всему птичьему царству: всякий раз, как группа Вармуса изучала очередную ветвь эволюционного древа, на них снова и снова взирал очередной вариант гена src. Калифорнийская группа лихорадочно перебирала различные виды животных в поисках гомологов src. Ген обнаружили в клетках фазанов, индюшек, мышей, кроликов и рыб. Ген src присутствовал в клетках только что вылупившегося птенца эму из зоопарка в Сакраменто, у овец и коров и, самое главное, в человеческих клетках. В 1976 году Вармус писал в письме: «Src повсюду!»

Однако ген src нормальных клеток был не абсолютно идентичен вирусному src. Сравнив вирусный src  с его аналогом из нормальной клетки, Хидэсабуро Ханафуса, японский вирусолог из Рокфеллеровского института в Нью-Йорке, обнаружил ключевое отличие в генетическом коде этих двух форм. Вирусный ген нес в себе мутации, которые резко меняли его свойства. Как наблюдал в Колорадо Эриксон, вирусный белок src был гиперактивной киназой, которая без разбора форсфорилировала все встреченные белки, тем самым включая постоянное клеточное деление. Клеточный же вариант белка src тоже был киназой, но несравненно менее активной. По контрасту с вирусным двойником действие ее жестко регулировалось — она то включалась, то выключалась во время деления клетки. Вирусный же белок src работал без остановки, как постоянно включенный автомат, превращающий клетку в машину для деления. Вирусный src — ген рака — был клеточным src , только работающим с постоянной перенагрузкой.

Из этих результатов начала вырисовываться теория, величественная и всеобъемлющая, объясняющая десятилетия разрозненных наблюдений: вероятно, src, предшественник гена, вызывающего рак, был изначально присущ животным клеткам. Возможно, вирусный ген src эволюционировал, произошел от клеточного гена src. Вирусологи давно считали, что вирус вносил в клетку-хозяина активированный ген src, чем индуцировал трансформацию нормальной клетки в злокачественную. Однако сам по себе этот ген имел не вирусное происхождение, а произошел из гена-предшественника, входящего в состав клетки — в состав всех клеток. Растянувшаяся на десятилетия охота началась с курицы, а закончилась, метафорически выражаясь, яйцом — геном-предшественником, имеющимся во всех клетках человека.

Выходит, вирус саркомы Рауса был результатом невероятного эволюционного происшествия. Как продемонстрировал Темин, ретровирусы постоянно снуют в геном клетки и из него: от РНК к ДНК и от ДНК к РНК. Во время этого кружения они могут случайно прихватывать с собой кусочки клеточного генома и переносить их от одной клетки к другой. По всей вероятности, вирус саркомы Рауса подхватил из раковой клетки активированный ген src и с тех пор носил его в вирусном геноме, вызывая рак у новых хозяев. По сути, сам вирус был случайным переносчиком гена, берущего начало в раковой клетке, — паразит, на котором паразитирует рак. Раус ошибался — но ошибался красиво. Вирусы и в самом деле вызывают рак, однако делают это при помощи гена, изначально присущего клетке.

 

Науку нередко описывают как процесс накопления и повторения, головоломку, которую разгадывают шаг за шагом, и каждый новый кусочек вносит в общую картину еще несколько расплывчатых пикселей. Однако появление кардинальной новой теории в науке сплошь да рядом происходит совсем иначе, без каких бы то ни было повторений. Вместо того чтобы отдельным шагом объяснить одно наблюдение или же феномен, внезапно все поле зрения складывается в единое и совершенное целое. Наблюдать за этим процессом — все равно что смотреть, как головоломка решается сама собой.

Исследования Вармуса и Бишопа оказали на генетику рака именно такой кристаллизующий, высвечивающий общую картину эффект. Важнейшее следствие их экспериментов состояло в том, что ген, вызывающий рак — «протоонкоген», как называли его Бишоп с Вармусом, — изначально был обычным клеточным геном. Мутации, вызываемые химическими веществами или облучением, влекли за собой образование рака не потому, что внедряли в клетку чужеродные гены, но потому, что активировали внутренние, эндогенные протоонкогены.

«Подчас кажется, что природа наделена весьма мрачным чувством юмора и иронией», — писал Раус в 1966 году. Самым ироничным стал последний урок, почерпнутый из изучения вируса саркомы Рауса. Почти шестьдесят лет этот вирус дразнил воображение биологов — в их печальный перечень вошел и Шпигельман, — увлекая их по ложному пути. Однако ложный путь в результате вывел к цели — от вирусного src к клеточному src и гипотезе, что внутренние протоонкогены повсеместно находятся в геноме нормальной клетки.

В стихотворении Льюиса Кэрролла, наконец-то поймав неуловимого Снарка, охотники обнаружили, что это не диковинный зверь, а один из их же товарищей, вместе с ними отправившийся в поход. Так же вышло и с раком: раковые гены явились изнутри генома человека. Похоже, что древние греки были предельно точны в использовании термина «онкос». Оказывается, рак по сути своей изначально «загружен» в наш геном, ожидая активации, и мы обречены носить эту роковую ношу — «онкос» — в своих генах.

В 1989 году Вармус и Бишоп получили Нобелевскую премию за открытие клеточной природы ретровирусных онкогенов. На банкете в Стокгольме Вармус, вспомнив студенческие дни, прочел отрывок из эпической поэмы «Беовульф», в котором описывалась победа над драконом. «Мы не убили нашего врага, раковую клетку, образно говоря, не оторвали ему ни единой лапы, — сказал Вармус. — В нашем славном приключении мы яснее разглядели чудовище, по-новому описали его клыки и чешую — и поняли, что рак, подобно Гренделю, просто искаженная версия нас самих».

 

Ветер в деревьях

 

Острый, острый ветер, пробирающийся сквозь хаос мира, подобно острому идеальному резцу скульптора…

Д. Г. Лоуренс

 

Открытия, сделанные летом 1976 года, решительно преобразовали мир биологии рака, вновь поместив гены в центр внимания. Теория протоонкогенов Гарольда Вармуса и Майкла Бишопа стала первой связной и непротиворечивой теорией канцерогенеза. Она объясняла, каким образом и радиация, и сажа, и сигаретный дым, и прочие самые разнообразные и на первый взгляд никак не связанные между собой факторы могут приводить к раку — вызывая мутацию и тем самым активируя предшественники онкогенов в клетке. Эта теория придала смысл отмеченной Брюсом Эймсом взаимосвязи между канцерогенами и мутагенами: химические вещества, вызывающие мутации в ДНК, приводят к раку потому, что изменяют клеточные протоонкогены. Проясняла теория и то, почему один и тот же тип рака встречается, пусть и с разной частотой, и у курильщиков, и у некурящих: потому что в клетках и у тех, и у других имеются одинаковые протоонкогены — но у курильщиков рак возникает чаще за счет того, что содержащиеся в табачном дыме канцерогены увеличивают скорость мутаций.

Но как же выглядят гены рака у человека? Вирусологи обнаружили ген src сперва в вирусах, а потом и в клетках, но никто не сомневался в том, что по всему геному человека разбросано множество и других эндогенных протоонкогенов.

У генетиков есть два разных способа «увидеть» гены. Первый способ — структуральный: гены можно наблюдать в форме физической структуры, кусков ДНК, уложенных в хромосому, точь-в-точь как представляли себе Морган и Флемминг. Второй способ — функциональный: гены можно представлять себе, как Мендель, в наследовании тех или иных черт, передающихся от поколения к поколению. В период между 1970 и 1980 годами генетики, занимающиеся проблемами рака, начали рассматривать вызывающие рак гены в свете двух этих подходов. Каждое отдельное наблюдение усиливало понимание механизмов канцерогенеза и подводило науку все ближе к постижению ключевых молекулярных нарушений, связанных с раком у людей.

Сначала обнаружили структуру ракового гена, его анатомию. В 1973 году, когда Вармус и Бишоп только приступали к первым исследованиям гена src , чикагскому гематологу Джанет Роули удалось увидеть ген рака в осязаемой, физической форме. Роули изучала закономерности окрашивания хромосом в клетках, стремясь научиться выявлять нарушения хромосом в раковых клетках. Окрашивание хромосом, техника, которой она овладела в совершенстве, находится посередине между наукой и искусством — причем искусством, отставшим от жизни, словно традиционная живопись в эру цифрового изображения. В эпоху, когда генетики углубились в мир РНК, опухолевых вирусов и онкогенов, Роули упорно тащила свою отрасль назад к корням — к окрашенным синеньким хромосомам Бовери и Флемминга. Более того, нагромождая анахронизм на анахронизм, она и предметом исследования выбрала хронический миелогенный лейкоз (ХМЛ), знаменитое беннеттовское «нагноение крови».

Исследования Роули основывались на предыдущих работах двух патологов из Филадельфии, также занимавшихся ХМЛ. В конце 1950-х годов Питер Ноуэлл и Дэвид Хангерфорд обнаружили, что в клетках этой разновидности лейкоза одна из хромосом всегда короче, чем ее аналог в нормальной клетке. В клетке человека содержится сорок шесть хромосом — парно, по двадцать три от каждого родителя. Ноуэлл обнаружил, что в клетках ХМЛ у одной из пары двадцать второй хромосомы всегда не хватает головки. Ноуэлл назвал это нарушение филадельфийской хромосомой, в честь места, где сделал это открытие. Однако ни Ноуэлл, ни Хангерфорд не могли понять, откуда берется это нарушение и куда девается недостающая часть хромосомы.

Шагая по стопам этого исследования, Роули стала отслеживать такую укороченную хромосому. Рассматривая тысячекратно увеличенные фотографии своих образцово окрашенных препаратов, — она раскладывала их на обеденном столе и склонялась над фотографиями, ища недостающий кусок знаменитой филадельфийской хромосомы, — Роули обнаружила закономерность. Пропавшая часть двадцать второй хромосомы прикреплялась в другое место: к концу девятой хромосомы. А кусок девятой хромосомы, напротив, крепился к двадцать второй. Подобное генетическое событие получило название «транслокация» — обмен участками между двумя хромосомами.

Роули обследовала все новых и новых пациентов, больных ХМЛ, и неизменно обнаруживала у них все ту же транслокацию. О том, что раковые клетки изобилуют хромосомными патологиями, было известно еще со времен фон Ганземана и Бовери. Данные Роули позволяли сделать гораздо более глубокие выводы. Рак — не беспорядочный хромосомный хаос, а упорядоченный хромосомный хаос: определенным разновидностям рака присущи специфические мутации, одинаковые во всех раковых клетках.

Хромосомные транслокации способны создавать новые гены, называемые химерами, за счет слияния двух генов, прежде локализованных в разных хромосомах, — скажем, «голова» девятой хромосомы соединяется с «хвостом» тринадцатой. Роули предположила, что транслокация, характерная для ХМЛ, как раз и приводит к образованию химерного гена. Роули не знала, какие именно функции выполняет этот новый химерный уродец, но продемонстрировала, что в раковых клетках человека могут существовать уникальные генетические нарушения, проявляющиеся в виде деформации структуры хромосом. Впоследствии было выявлено, что филадельфийская транслокация приводит к образованию онкогена.

 

В начале 1970-х годов Альфред Кнудсон, генетик из Калифорнийского технологического института, разработал совершенно иной метод выявления гена, вызывающего рак человека.

Роули визуализовала гены, вызывающие рак, изучая физическую структуру хромосом раковой клетки. Кнудсон же сосредоточился на функциях гена. Гены — единицы наследственности: они переносят те или иные свойства — признаки — от поколения к поколению. Кнудсон рассудил так: если гены вызывают рак, то можно выявить закономерности в наследовании рака, точно так же как Мендель пришел к самой идее существования генов, изучая наследование оттенка цветов и высоты гороха.

В 1969 году Кнудсон перешел в техасский Онкологический центр Монро Данауэйя Андерсена, где Фрейрих основал преуспевающий клинический центр, посвященный раку у детей. Кнудсону требовался «образцовый» рак — передающаяся по наследству злокачественность, закономерности наследования которой помогли бы выявить, как работают гены, вызывающие рак. Самым естественным выбором в такой ситуации была ретинобластома — редкая и диковинная разновидность рака глаза. Еще де Гувеа в Бразилии описал поразительное свойство этого рака проявляться в одной и той же семье на протяжении нескольких поколений.

Ретинобластома — крайне трагичный вариант рака, и не только потому, что не щадит детей. Она затрагивает один из самых важных для ребенка органов: глаз. Иногда болезнь диагностируется, когда ребенок замечает, что мир вокруг начинает тускнеть и размываться. Иногда этот рак обнаруживают совершенно случайно, по детским фотографиям: от вспышки глаз ребенка сверкает, как у кошки под фонарем, и становится видно таящуюся в глубине опухоль. Если недуг не лечить, то он распространяется дальше, затрагивая глазной нерв, а оттуда поднимается в мозг. Основными методами лечения является облучение опухоли высокими дозами гамма-радиации или хирургическое удаление глаза.

Ретинобластома бывает двух видов: наследственная «семейная» форма и спорадически возникающая опухоль. Де Гувеа описывал наследственный вариант. У детей, страдающих наследственной ретинобластомой, болезнь часто встречается в семьях: у отцов, матерей, родных и двоюродных братьев и сестер, других родственников. Как правило, подобно случаю, описанному де Гувеа в Рио, опухоли возникают на обоих глазах. Однако ретинобластома наблюдается и у детей, в семьях которых никогда не случалось ничего подобного. В таких случаях опухоль всегда затрагивает только один глаз.

Эта наследственная закономерность интриговала Кнудсона. Он задался вопросом, не поможет ли математический анализ найти какие-либо отличия в развитии рака при спорадической и наследственной форме ретинобластомы. Для этого Кнудсон провел простейший эксперимент: разделил больных детей на две группы — со спорадической формой ретинобластомы и с наследственной — и стал изучать их истории болезни. По больничным записям он составил таблицы возраста, в котором проявилось заболевание, а потом на основании этих таблиц построил график. Оказалось, что рак в этих двух группах развивался с разной скоростью. При наследственной ретинобластоме наступление болезни шло стремительно, диагноз, как правило, ставился в возрасте от двух до шести месяцев. Спорадическая ретинобластома обычно проявлялась в возрасте от двух до четырех лет.

Почему одно и то же заболевание у разных детей развивается с разной скоростью? Позаимствовав приемы и простые уравнения у физики и теории вероятности, Кнудсон построил модель развития рака в двух группах и обнаружил, что все данные укладываются в несложную модель. У детей с наследственной ретинобластомой для развития рака требовалось только одно генетическое нарушение, а у детей со спорадической формой — два.

Отсюда возникал еще один озадачивающий вопрос: почему возникновение рака при наследственной форме болезни вызывается только одним генетическим нарушением, а при спорадической — двумя? Кнудсон предложил простой и красивый ответ. «Число два, — говорил он, — любимое число генетиков». В каждой нормальной клетке человека имеется по две копии каждой хромосомы, а следовательно — и по две копии каждого гена. В каждой нормальной клетке имеются две нормальные копии гена ретинобластомы — Rb.  Кнудсон предположил, что для развития спорадической ретинобластомы обе копии гена Rb активируются путем мутации. Поэтому спорадическая ретинобластома развивается в более позднем возрасте, ведь для нее в одной клетке должны накопиться две одинаковые мутации.

Дети же с наследственной ретинобластомой рождаются с дефектной копией Rb. В их клетках одна копия гена дефектна с самого начала, поэтому требуется лишь одно генетическое изменение, чтобы клетка это почувствовала и начала делиться. Таким образом, дети с семейной ретинобластомой изначально имеют предрасположенность к болезни, и рак у них развивается быстрее, как и пронаблюдал Кнудсон в статистических таблицах. Кнудсон назвал это теорией двойного удара. Чтобы спровоцировать деление клетки, тем самым вызвав рак, для каждого гена требуется две мутации, два удара по генам.

Теория двойного удара Кнудсона прекрасно объясняла наследование ретинобластомы, но на первый взгляд казалась не в ладу с изначальным пониманием молекулярных основ рака. Вспомним, что гену src, для того чтобы вызывать бесконтрольное деление клетки, нужна лишь одна активированная копия. Почему же тогда для Rb требуются две?

Ответ кроется в функциях этих генов. Ген src активирует некую функцию клеточного деления. Мутация по этому гену, как показали Рей Эриксон и Хидэсабуро Ханафуса, создает клеточный белок, неспособный остановиться, — неукротимую и неутомимую киназу, провоцирующую постоянное деление клетки. А ген Кнудсона, Rb, осуществляет противоположное действие. Он подавляет клеточное деление. Лишь полное выведение такого гена из строя — двойной мутацией — приводит к бесконтрольному делению клетки. Таким образом, Rb является геном-супрессором рака, функциональной противоположностью src. Кнудсон назвал его антионкогеном.

«По всей видимости, — писал он, — в возникновении рака у детей ключевую роль играют два типа генов. Первый, онкогены, действует посредством повышенной, аномальной активности… Второй же класс, антионкогены (или супрессоры опухолей), в онкогенезе рецессивен: рак происходит лишь тогда, когда обе нормальные копии удалены или изменены. Некоторые люди обладают одной такой мутацией в зародышевой линии, а потому крайне подвержены раку: для его возникновения им требуется лишь одна соматическая мутация. Другие же дети, хотя и не имеют в зародышевой линии мутации, все равно заболевают раком в результате двух соматических мутаций».

Поразительно, что столь тонкая и изысканная гипотеза была сделана на основе одних статистических данных! Кнудсон не знал молекулярного воплощения вычисленных им антионкогенов, не смотрел на саму раковую клетку, пытаясь «увидеть» эти гены, не провел ни единого биологического эксперимента, охотясь за Rb. Подобно Менделю, он имел дело с генами лишь в статистическом смысле. По его собственным словам, он делал выводы об их существовании, «как делают вывод о ветре, глядя, как качаются деревья».

 

В конце 1970-х годов Вармус, Бишоп и Кнудсон начали описывать основные молекулярные нарушения раковых клеток, исследуя координированную работу онкогенов и антионкогенов. Гены рака, предположил Кнудсон, бывают двух разновидностей. «Положительные» гены, как, например, src, — это активированные версии нормальных клеточных генов. В нормальной клетке такие гены, получив соответствующий сигнал, способствуют клеточному делению. В мутантной же форме такие гены приходят в состояние постоянной гиперактивности, что влечет за собой бесконтрольное клеточное деление. Активированный протоонкоген, пользуясь сравнением Бишопа, подобен заевшей педали газа в машине. Клетка с такой заевшей педалью во весь опор несется по пути деления, не в силах прекратить митозы.


Дата добавления: 2019-02-12; просмотров: 78; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!