ОТКУДА ВЗЯЛАСЬ ТЕМНАЯ МАТЕРИЯ ? 11 страница



 Отсюда: R = 3√2r = 1,259921 ... r . k = 1,259921.

Таким образом, коэффициент связности объема k (не­соизмеримое число Дедекинда) равно:                

k = 3√2 = 1, 259921...

Это число, как и коэффициент связности окружности, является иррациональным и обусловливает бесконечное движение параллельных к центру сферы.

Хотя коэффициент связности и является безразмерностной величиной, он качественно индивидуален для каждого параметра. Говоря словами Дедекинда, каждый коэф­фициент принадлежит своему и только своему рангу па­раметров, а потому для каждого из них необходима соб­ственная индексация.

 

2.2. Структурирование динамического

пространства

 

Известно, что проблема бесконечного включает дихо­томию взаимосвязи двух пар категорий, с одной сторо­ны, различие конечного и бесконечного, с другой — по­коя и движения. Попарное существование противо­положных форм категорий обусловливает различие в подходе к описательному отображению космических тел и структур. Это различие, прежде всего, относится к первичным понятиям: тело-точка, прямая-луч, плос­кость, движение и т.д.

Выше было показано, что тело в динамической гео­метрии представляет материальную сферу, бесконечную внутрь и отграниченную собственной поверхностью от окружающего пространства. Тело, как вещественное об­ разование, формирует структуру и влияет на внешнее пространство в соответствии с энергетической на­ пряженностью, создаваемой количественной величиной всех своих свойств.

Тело можно представить точкой только тогда, ко­ гда ее параметры и собственная напряженность несо­поставимы по рангу с параметрами и напряженностью окружающего пространства и тел, образующих структуру данного пространства.

Линия или прямая есть условный след от движения точки (тела) в пространстве. И начало, и конец линии входят в поверхность некоторых точек. Линии на уча­ стке от поверхности одной точки-сферы до другой имеют конечную длину изменяемой метричности, отождествляемую с некоторой метрической цифрой.

Если эту же прямую продолжить за пределы поверх­ ности конечных точек-сфер, или внутрь их, то прямая станет иметь бесконечную длину, не отождествимую ни с какими действительными числами.

Линия (условная), соединяющая две движущиеся оп­ределенным образом точки, называется образующим лучом или образующим. Образующий луч индексируется начальной буквой слова — Л. Так, если одна из точек не­подвижна на плоскости, а другая, не меняя расстояния до первой, описывает в движении правильный круг, то образующий луч с такими свойствами в геометрии на­зывается радиусом.

В пространственных системах образующий луч Л всегда подвижен, и каждая его точка в процессе движе­ния описывает геометрическую фигуру, соответствую­щую уравнению движения и коэффициенту связности. Естественно, что в уравнении движения зашифрована и напряженность области концевых точек луча и про­странства, в котором луч движется. (Везде предполага­ется, что след движения остается только от перемеще­ния концевых точек.)

Основной способ движения луча в динамической геометрии — собственное удли­нение или сокращение (пульсация) с определенным пе­риодом, сочетающийся с вращением и некоторым

про­странственным перемещением, например, в простран­стве декартовых координат. Поэтому кривые (следы), плоскости и пространства всех геометрий, включая Евк­лидову, Лобачевского и Римана, описываются обра­зующим      лучом, один конец которого может двигаться по линии или оставаться неподвижным, а другой, в движении, удлиняться или сокращаться. На рис. 10 показано, как, двигаясь на плоскости, образующий АО от точки А до точки А', остается неизменным по длине и описы-

вает дугу окружности пол­ностью в соответствии с геометрией Евклида. В точке А' он в движении начинает укорачиваться и до точки А" движется по сферической кривой, описывая линию положи-тельной кривизны в соответствии с гео­метрией Римана. В точке А" происходит следующий пе­релом и образующий на участке А" А"' начинает описы­вать линию отри-Рис. 10.                   цательной кривизны по геометрии Лобачевского до точки А'", после которой линия движе­ния снова меняет «свою» геометрию и т.д. Переломные точки А', А", А'", А"" имеют статическую для этой об­ласти величину луча, и потому луч может быть отнесен к геометрии Евклида. Перелом есть изменение качест­ва, процесс перехода от одной кривизны к другой.

Оба конца луча могут совершать любые движения, описывать самые различные фигуры, кроме тех, кото­рые могут привести к их пересечению между собой. Так, например, если конец луча, описывающий кривую АА'А"А'"... (рис. 10), замкнется при  одновременном движении другого конца-точки О по прямой, то выпи­сывается объемная фигура — профилированный ци­линдр. Если же точка О будет двигаться по окружности, то вместо цилиндра получается тор того же профиля. Таким образом, возникновение искривления как поло­жительного, так и отрицательного, связано с изменени­ем длины луча, создающего это «искривление». Длина луча, в свою очередь, зависит от напряженности про­странства в различных направлениях от точки, из кото­рой он исходит. Изменение напряженности не есть ис­ кривление поверхности и не приводит к нему, а вызывает изменение метричности. И, следовательно, длины луча. Покажу это (рис.11).

Пусть луч АО, исходящий из условной точки О, двигаясь по отрезку окружности АВО, начал удлиняться и в точке А' пересек прямую А"О. Продолжая дальнейшее движение, он пересек также прямую ОВ" — окончание дуги АВ.

Дуга АВ разделена прямыми на четыре равных отрезка к, l , т, п. Прямые, разделившие дугу, продолжены до пересечения эквипотенциальной линии А" В" и также делят эту дугу на четыре Рис. 11.                    равных отрезка к", l ", т", п". В пространстве отрезки k " = k = l′′ = l = т" = т = п" = п, как следствие пропорционального изменения напряженно­сти от точки О к периферии поверхности. Поскольку пропорциональность напряженности сохраняется на всей поверхности, то отрезок А'В' делится на четыре части к', l ′, т', п′ так что: к' = l ' = т' = п′ хотя по евклидо­вой и римановой геометрии к' ≠ п′.

Естественно также, что к = к' = к"; l = l ' = l "; т = т' = т"; п = п' = п". То есть все отрезки равны между собой так, что отно­шение каждого из отрезков к длине соответствующего луча между эквипотенциальными дугами будет величи­ной постоянной. Именно это свойство напряженности пространства обусловливает образование пространст­венных ячеек — основных элементов динамической гео­метрии. Напряженность и изменение метричности (кри­визна относительно статичности) — это те факторы, которые не учитывались в теории кривизны ни Гауссом, ни Риманом. Отмечу, что кривизны поверхностей, а тем более кривизны объемов в пространстве не суще­ствует. А поскольку пространство отображает динами­ческую структуру реального мира, то эмпирическое подтверждение ее адекватности этому миру можно по­лучить прямо на поверхности Земли.

Приведу описание нескольких экспериментов, под­тверждающих такую возможность. В долине вблизи гор можно построить горизонтальную мерную милю из иде­ального материала длиной в 3 км (с точностью до 1 см). Произвести геодезическую съемку этой мили и перене­сти ее размеры не по отвесу на горное плато на высоту одного, а лучше 2 км, и там построить по теодолиту другую горизон­тальную мерную милю той же длины. Современные геодезические приборы позволяют провести операцию переноса на несколько десятков километров с точно­стью до 2-3 см. В соответствии с геометрией Евклида мили и в долине и на плато должны быть не одинаковой длины. Миля на плато на высоте 1 км будет на 47 см длиннее мили в долине, а на высоте 2 км – на 94 см.

Следует замерить милю в долине несколькими твёрдыми мер­ными линейками, проведя ими же в аналогичных усло­виях измерение мили на плато, убедиться, что она в точности, до ошибок измерения, равна миле в долине, а, следовательно, мерные линейки изменили свою длину.

Другой эксперимент: на горе с горизонтальным плато на высоте 2 км выложить горизонтально из 40-50 сталь­ных стержней длиной по 20-25 м (± 0,1 мм) единый стержень километровой длины. Отметки его концов пе­ренести теодолитом в долину под горой, потом разобрать конструкцию, перебросить ее в долину и вновь собрать. Согласно геометрии Евклида собранная конструкция должна быть длиннее отметок на 32 см. Однако длина стержней при из­мерении метром окажутся в рамках отметок ± ошибка измерения.

Наконец можно просто провести геодезическими при­борами измерение отрезка относительно горизонталь­ной поверхности в долине на длине 10 км и, замерив та­кую же длину, перенесенную теодолитом на плато на высоту 2 км, убедиться с достаточно грубым приближе­нием (± 25-30 см) в исчезновении при измерении отрез­ка почти трехметровой длины. (Можно предположить, что аналогичные нестыковки уже встречались карто­графам и геодезистам и не получали теоретического объяснения.)

Рассмотрим в общих чертах структуру пространст­венной ячейки отграниченной нейтральными зонами. Пространственные первичные ячейки образуются ядра­ми по периметру своей нейтральной зоны, соизмеримые по напряженности с напряженностью окружающего пространства. Они могут включать одно ядро (редко), два ядра (большинство), несколько ядер (редко). В настоящей работе напряженность схематически обознача­ется условной линией, как бы оставляемой ядром тела, взаимодействующего с пространством. Эти линии по наглядности являются некоторым подобием фарадеевых силовых линий, а в геометрии это геодезические линии. Прямые напряженности выходят из пространства одного ядра 1(рис 12) с фиктивным центром О и входят в пространство другого ядра 2 с фиктивным центром О2. Линии напряженности О1АО2, О1ВО2, О1СО2..., соеди­няющие фиктивные центры, в пространстве параллель­ны. В точках А, В, С, D , ... они испытывают кажущееся преломление, обусловленное зоной единой минималь­ной напряженности — нейтральной или эквипотенциаль­ной зоной.

Ячейка образуется только тогда, когда оба ядра имеют пространственную линию общей эквипотенциальной зоны (нейтральные зоны), как бы выделяющую их из окружающего пространства. Эти зоны образует из них единую систему и не позволяет ядрам покинуть ее. Именно она обусловливает дискретность пространства одного ранга.

Первичные ячейки через нейтральные зоны взаимо­Дей-ствуют с окружающими ячейка-ми и входят в состав ячеек несо-измеримого ранга. Общая струк-тура про­ странства ¾ иерархия равенства. В пространстве ячей­ки между ядром и нейтральной Рис. 12.                                     зоной могут существо­вать спутники ядра 3с центром О3. Между спутником и ядром также существует нейтральная зона А'В'С ... А"В"С", охватывающая спутник эллиптической сферой. Выходящие из центра О1 линии входят в центр О3 или замыкаются в нейтральной зоне. Радиус (статический) спутника определяется граничными условиями. Про­странство ячейки, ядра и спутника всегда находятся в движении.

Ядро как элемент ячейки и самостоя­тельная система единой внутренней напряженности име­ет сложную струк­туру, обусловлен­ную материально­стью самого образо­вания. Оно включа­ет несколько «скорлуп»-сателлитов 1 (рис. 13), у которых нейтральная зона 2 каждой скорлупы находится либо вну­три этой поверхно­сти, либо у самой поверхности, что и удерживает их в единой системе. Поэтому сферы сателлитов, взаимодействуя нейтраль­ными зонами, образуют на своей внешней поверхности равновеликую напряженность, интегрированную уже как напряженность самого ядра.

Пространство внутри скорлуп (рис. 13) материально и  имеет напря-женность более высокого ранга, чем снаружи. В этом пространст­ве может на-ходиться внутреннее вещественное ядро-керн 3. Его напряженность несоиз-мерима по рангу ни с напряженностью пространства ячейки, ни с напряжен­но- Рис. 13.      стью сателлитов. Она есть плотность другого ранга.

 

2.3. Свойства пространственных систем

 

Рассмотрим, что неявно происходит с пространством при возникновении в нем тел, отображаемых элемента­ми динамической геометрии [36]. Возьмем чистый лист бумаги и предположим, что этот лист есть некоторая плоскость, однородная и изотропная в четырех направле­ниях, а, следовательно, на пространстве листа мы не за­мечаем никакой структуры и внутренней напряженно­сти. Эта поверхность может быть названа бес­форменной, хаотичной, или поверхностью одного ранга. Структура этого ранга и его ячейки нами не фиксируют­ся.

Поставим в любом месте листа точку. Точка на листе никакой роли не играет, структуры не создает, и как бы не возникает напряженности различной плотности на всей поверхности. Но хаос уже исчез, точка изменяет плотностное качество всего пространства и становится центром образования нового пространства, центром структуризации и изменения его качеств, центром дру­гого ранга. И не существенно, пространство ли это лис­та или пространство космоса, в котором имеется тело. Существенно в подходе к явлению, к его формализации ¾ другое. Образует ли точка пространство актуальной бесконечности или бесконечности потенциальной? Именно одна из сторон двойственности обусловливает процесс понимания формализации элементов различных пространств по мере их воссоздания на листе.

Точка, как и другие элементы в пространстве потен­циальной бесконечности (или в объеме), не равнозначна другим, не видимым на листе точкам, и уже создает (да­же если это не отражают условия задачи) в окружающем пространстве некоторую напряженность, определяемую изменением метрического пространства. Именно метричность есть агент, отображающий распространение плотности напряженности от точки в пространстве. При этом на бесконечности одного ранга плотность убывает от точки до нуля. (Нулевая плотность напряженности равна напряженности, создаваемой телами нижнего ран­га и потому не равна 0.) Поскольку значимость точки определяется ее рангом и рангом пространства, то ранги определяют также изменение метричности.

Если на плоскости (в пространстве) имеется две или несколько точек, то напряженность между ними опре­деляется рангом точек. Поскольку в задачах чаще всего задается одинаковый ранг, то плотность напряженности между точками становится неоднозначной. Но между ними всегда имеется зона одинаковой плотности напря­женности — нейтральная зона. Структура всех напряженностей между точками определяется именно харак­тером и местом нейтральных зон. В плоскости (как и в объеме) актуальной бесконечности напряженность от­сутствует, а, следовательно, может отсутствовать и метричность (что и наблюдается в проективной геометрии). Если же она присутствует, то неизменна величиной по всей плоскости (по всему объему), и точка, как и другие фигуры в этом пространстве, на пространство никакого влияния не оказывает.

Поставим еще одну точку. Структуризация возросла, и снова изменилось качество всего пространства. Между точками по различным критериям может быть найдена активная область или нейтральная зона, разде­ ляющая как их, так и плоскость листа. Или они могут быть соединены одной линией, которая делит лист уже на две иные, чем нейтральная линия, части, создавая иные пространства по обе ее стороны.

Соединим точки линией, и в одном из образовавшихся пространств, в стороне от линии, поставим точку, создав тем самым все необходимые предпосылки для форму­лирования или пятой аксиомы Евклида или основной аксиомы динамики пространства. Все имеющиеся на плоскости элементы равнозначны или, по современной артикуляции, равноправны, и только движение опреде­ляет их принадлежность к динамике. Если теперь со стороны прямой, восстановив до точки М образующий луч, двигать его неизменным по длине вдоль прямой, то точка, в которую он вошел, будет оставлять след евкли­довой прямой, параллельной базовой. И это будет про­должаться бесконечно, если... если мы не последуем за Дезаргом. Дезарг, исходя из кажущегося пересечения в перспективе параллельных в одной точке, предложил считать пересечения проекциями «бесконечно удален­ных» точек, равноправными со всеми остальными эле­ментами. Так, в проективную геометрию вошли «несоб­ственные (бесконечно удаленные) точки» и «несобст­венные плоскости» — плоскости, на которых лежат эти точки.

Введение «несобственных» точек и плоскостей нарушило равнозначность элементов геометрии, было пер­ вым качественным отображением на плоскости фак­ торов напряженности пространства и свидетель­ ствовало о другом ранге несобственных точек. Однако нарушения равнозначности элементов обнаружено не было, и не потому, что оно отсутствует, а потому, что и обычным, и несобственным точкам и площадям постулировали равноправие. Это постулирование рав­ ноправия обусловило полную статичность проективной геометрии, нивелировало напряженности, привело к тому, что все прямые одной плоскости Дезарга всегда пересекаются на бесконечности. Таким образом, во­прос о различной напряженности у точек и линий на плоскости даже не возник. Развитие получили аксиомы статической геометрии.

Если теперь, для примера, представить движение колес паровоза по рельсам в пространстве обычном и не­собственном (потенциальной бесконечности), то мы увидим, как бы следуя за ним неизменными, что рельсы сначала будут параллельными (расстояние между ними — образующий луч, остается неизменным). Затем под воздействи­ем возрастающей напряженности несобственного про­странства начнут сходиться, (образующий луч будет уменьшаться и, соответственно, паровоз тоже) и, по­дойдя к несобственной точке, луч станет по «длине» меньше ее. Пройдя поверхность сферы-точки, т.е. про­никнув в объем другого ранга, луч продолжает умень­шаться и, миновав центр (но не через него), начинает возрастать до противоположной поверхности сферы.

Поскольку напряженность поверхности вокруг точки сферически симметрична (в предположении, что точка находится вдали от других точек), по выходу из несоб­ственной точки луч начнет расширяться, а рельсы, сле­довательно, расходиться под тем же самым углом, под которым они сходились. В результате возникнет полная иллюзия того, что в несобственной точке произошло пе­ресечение рельсов. На самом деле, на всем протяжении движения к точке, сквозь нее и за ней рельсы оставались параллельными. Менялась же напряженность несобст­венного пространства и несобственной точки в полном соответствии с динамикой пространства, что и создава­ло иллюзию схождения и расхождения рельсов. (Иллюзию их пе­ресечения в одной точке.)

Вторично неявная напряженность геометрической по­верхности проявила себя в геометриях Лобачевского и Римана. Это станет особенно заметно, если луч Л, вхо­дящий в точку М из прямой а, начинает двигаться вме­сте с точкой М на бесконечность, например в правую сторону (рис. 14). Причем граничныеусловия аксиомы запрещают точке приближение к прямой а, а лучу — со­кращаться по длине, но не запрещают точке М удалять­ся, а лучу Л удлиняться (своего рода пространственное отталкивание). Поэтому по мере движе-ния точка начи­нает откло-няться от прямой —ветвь в'. Если же луч Л вместе с точкой будет двигаться в левую сто- Рис. 14.                          рону, то получим анало­гичное отклонение от прямой а — ветвь в. Фигура, образуемая обеими ветвями как бы единой прямой в, окажется не эквиди-стантой, а некото­рой седловиной образуемой двусторонним движением.     


Дата добавления: 2018-11-24; просмотров: 35; ЗАКАЗАТЬ РАБОТУ