II. Решение задач по готовым чертежам.



1. На рисунке 1 АЕ – биссектриса треугольника АВС, АD = , АЕ = СЕ, АСВ = 37°. Найдите ВDЕ.

2. На рисунке 2 АD – биссектриса треугольника АВС, АО = ОD, МО  АD. Докажите, что МD || АВ.

                              Рис. 1                           Рис. 2

3. Решить задачи №№ 217, 211 (б).

III. Самостоятельная работа (проверочного характера с анализом ее выполнения).

Вариант I

1. На рисунке 12 прямые а и b параллельны, угол 2 на 34° больше угла 1. Найдите угол 3.

2. Через вершину прямого угла С  треугольника АВС  проведена прямая СD, параллельная стороне АВ. Найдите углы А и В треугольника, если DСВ = 37°.

Вариант II

1. На рисунке 13 прямые а и b параллельны, угол 2 в четыре раза меньше угла 1. Найдите угол 3.

2. Через вершину С треугольника СDЕ с прямым углом D проведена прямая СР, параллельная прямой . Найдите углы С и Е треугольника, если РСЕ = 49°.

           

Рис. 3                                                      Рис. 4

IV. Итог урока.

Домашнее задание: подготовиться к контрольной работе, решить № 210.

 

 

Урок 41
КОНТРОЛЬНАЯ РАБОТА № 3 «ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ»

Цели: проверить знания, умения и навыки учащихся по теме «Параллельные прямые» и применение знаний к решению задач.

Ход урока

I. Организация учащихся на выполнение работы.

II. Выполнение работы по вариантам.

Вариант I

1. Отрезки ЕF  и РD  пересекаются в их середине М. Докажите, что РЕ || DF.

2. Отрезок – биссектриса треугольника СDЕ. Через точку М проведена прямая, параллельная стороне СD и пересекающая сторону в точке N. Найдите углы треугольника DМN, если СDЕ = 68°.

Вариант II

1. Отрезки MN и EF пересекаются в их середине P. Докажите, что ЕN  || MF.

2. Отрезок АD – биссектриса треугольника АВС. Через точку D проведена прямая, параллельная стороне АВ и пересекающая сторону АС в точке F. Найдите углы треугольника АDF, если ВАС = 72°.

Вариант III
(для более подготовленных учащихся)

1. Отрезок АD – биссектриса треугольника АВС. Через точку D проведена прямая, пересекающая сторону АВ в точке Е так, что АЕ = ЕD. Найдите углы треугольника АЕD, если ВАС = 64°.

2. На рисунке 14 АС || ВD, точка М – середина отрезка АВ. Докажите, что М – середина отрезка СD.

Вариант IV
(для более подготовленных учащихся)

1. Отрезок DM – биссектриса треугольника СDЕ. Через точку М проведена прямая, пересекающая сторону в точке N так, что DN = MN. Найдите углы треугольника DMN, если СDЕ = 74°.

2. На рисунке 15 АВ || DС, АВ = . Докажите, что точка О – середина отрезков АС и ВD.

III. Итоги урока.

Домашнее задание: повторить пункты 5–29.

 

 

Вариант I

1. Отрезки ЕF  и РD  пересекаются в их середине М. Докажите, что РЕ || DF.

2. Отрезок – биссектриса треугольника СDЕ. Через точку М проведена прямая, параллельная стороне СD и пересекающая сторону в точке N. Найдите углы треугольника DМN, если СDЕ = 68°.

 

Вариант II

1. Отрезки MN и EF пересекаются в их середине P. Докажите, что ЕN  || MF.

2. Отрезок АD – биссектриса треугольника АВС. Через точку D проведена прямая, параллельная стороне АВ и пересекающая сторону АС в точке F. Найдите углы треугольника АDF, если ВАС = 72°.

 

Вариант I

1. Отрезки ЕF  и РD  пересекаются в их середине М. Докажите, что РЕ || DF.

2. Отрезок – биссектриса треугольника СDЕ. Через точку М проведена прямая, параллельная стороне СD и пересекающая сторону в точке N. Найдите углы треугольника DМN, если СDЕ = 68°.

 

Вариант II

1. Отрезки MN и EF пересекаются в их середине P. Докажите, что ЕN  || MF.

2. Отрезок АD – биссектриса треугольника АВС. Через точку D проведена прямая, параллельная стороне АВ и пересекающая сторону АС в точке F. Найдите углы треугольника АDF, если ВАС = 72°.

 

Вариант I

1. Отрезки ЕF  и РD  пересекаются в их середине М. Докажите, что РЕ || DF.

2. Отрезок – биссектриса треугольника СDЕ. Через точку М проведена прямая, параллельная стороне СD и пересекающая сторону в точке N. Найдите углы треугольника DМN, если СDЕ = 68°.

 

Вариант II

1. Отрезки MN и EF пересекаются в их середине P. Докажите, что ЕN  || MF.

2. Отрезок АD – биссектриса треугольника АВС. Через точку D проведена прямая, параллельная стороне АВ и пересекающая сторону АС в точке F. Найдите углы треугольника АDF, если ВАС = 72°.

 

Вариант I

1. Отрезки ЕF  и РD  пересекаются в их середине М. Докажите, что РЕ || DF.

2. Отрезок – биссектриса треугольника СDЕ. Через точку М проведена прямая, параллельная стороне СD и пересекающая сторону в точке N. Найдите углы треугольника DМN, если СDЕ = 68°.

 

Вариант II

1. Отрезки MN и EF пересекаются в их середине P. Докажите, что ЕN  || MF.

2. Отрезок АD – биссектриса треугольника АВС. Через точку D проведена прямая, параллельная стороне АВ и пересекающая сторону АС в точке F. Найдите углы треугольника АDF, если ВАС = 72°.

 

Вариант I

1. Отрезки ЕF  и РD  пересекаются в их середине М. Докажите, что РЕ || DF.

2. Отрезок – биссектриса треугольника СDЕ. Через точку М проведена прямая, параллельная стороне СD и пересекающая сторону в точке N. Найдите углы треугольника DМN, если СDЕ = 68°.

 

Вариант II

1. Отрезки MN и EF пересекаются в их середине P. Докажите, что ЕN  || MF.

2. Отрезок АD – биссектриса треугольника АВС. Через точку D проведена прямая, параллельная стороне АВ и пересекающая сторону АС в точке F. Найдите углы треугольника АDF, если ВАС = 72°.

 

Вариант I

1. Отрезки ЕF  и РD  пересекаются в их середине М. Докажите, что РЕ || DF.

2. Отрезок – биссектриса треугольника СDЕ. Через точку М проведена прямая, параллельная стороне СD и пересекающая сторону в точке N. Найдите углы треугольника DМN, если СDЕ = 68°.

 

Вариант II

1. Отрезки MN и EF пересекаются в их середине P. Докажите, что ЕN  || MF.

2. Отрезок АD – биссектриса треугольника АВС. Через точку D проведена прямая, параллельная стороне АВ и пересекающая сторону АС в точке F. Найдите углы треугольника АDF, если ВАС = 72°.

Урок 31

СУММА УГЛОВ ТРЕУГОЛЬНИКА

Цели: доказать теорему о сумме углов треугольника, следствия из нее; ввести понятия остроугольного, прямоугольного и тупоугольного треугольников; рассмотреть задачи на применение доказанных утверждений.

Ход урока


Дата добавления: 2018-09-20; просмотров: 424; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!