На основании первых m точек провести экстраполяцию (предсказание) значений n точек.



MathCad имеется три сплайн-функции:

· cspline( )

· pspline( )

· lspline( )

Эти функции возвращают вектор коэффициентов вторых производных, который мы будем называть S. Этот вектор обычно используется в функции interp( ), описанной ниже. Аргументы должны быть вещественными векторами одинаковой длины. Значения вектора должны быть расположены в порядке возрастания.

Эти три функции отличаются только граничными условиями:

· функция lspline( ) генерирует кривую сплайна, которая приближается к прямой линии в граничных точках;

· функция pspline( ) генерирует кривую сплайна, которая приближается к параболе в граничных точках.

· функция cspline( ) генерирует кривую сплайна, которая может быть кубическим полиномом в граничных точках.

· interpвозвращает интерполируемое значение, соответствующее аргументу .

Вектор вычисляется на основе векторов данных и одной из функций pspline( ), lspline( ) илиcspline( ).

 

Пример 6.3.6-4. Пусть значения функции, полученные в ходе эксперимента, представлены в виде таблицы:

X   1.2 1.4 1.6 1.8       2.0
 y(x) -0.085 -0.462 0.128 3.546 2.654

Применить кубическую сплайн-интерполяцию, при которой экспериментальные точки соединяются отрезками кубических полиномов.

Для этого одновременно используются две функции: interp(s,x,y,t) и cspline(x,y), где x – вектор значений аргументов, y – вектор значений функции, s – вектор вторых производных, создаваемый функцией cspline, t – значение аргумента, при котором вычисляется функция.

 

Тема 6.4. Численное интегрирование

 

6.4.1. Постановка задачи

6.4.2. Метод прямоугольников

6.4.3. Формула трапеций

6.4.4. Формула Симпсона

6.4.5. Оценка погрешности численного интегрирования

6.4.6. Технология вычисления интегралов в среде математических пакетов

 

Постановка задачи

Из курса математического анализа известно, что, если функция f(x) непрерывна на отрезке [a;b] и дифференцируема, то определенный интеграл от этой функции в пределах от a до b существует и может быть вычислен по формуле Ньютона-Лейбница:

        

Если первообразную функцию F(x) не удается выразить аналитически через элементарные функции или если при проведении практических расчетов подынтегральная функция f(x) задается в виде таблицы, то это приводит к необходимости замены аналитического интегрирования численными методами.

Для функции f(x), заданной в прямоугольной системе координат на интервале [a;b], этот интеграл численно равен площади, ограниченной кривой f(x), осью Ox и двумя ординатами ac и bd.

Рис. 6.4.1-1

 

Задача численного интегрирования заключается в нахождении значения определенного интеграла через ряд значений подынтегральной функции yi=f(xi), заданной в точках xi (i=0,1,…,n). Причем, x0 = a, xn = b. Чаще всего интервал разбивают на подынтервалы длиной h = xi+1 - xi.

Применительно к однократному интегралу, формулы численного интегрирования представляют собой квадратурные формулы вида:  

гдеAi – числовые коэффициенты, называемые весами квадратурной формулы, аxi – точки из отрезка - узлами квадратурной формулы, n > 0 – целое число.

Искомый определенный интеграл можно представить в виде суммы интегралов:

На каждом i-м отрезке функция аппроксимируется (заменяется) некоторой другой легко интегрируемой функцией gi(x). В результате получаем следующую квадратурную формулу:

.

Для решения поставленной задачи подынтегральную функцию f(x) необходимо заменить приближенной функцией,  которая может быть проинтегрирована в аналитическим виде. В качестве такой функции обычно используют полином  Р(х) с узлами интерполяции в точках   х0, х1, х2, …,хn. В этих точках значения функции и интерполяционного полинома полностью совпадают f(xi) = Р(xi).

Для получения простых формул интегрирования используют полиномы нулевой, первой и второй степени и соответственно получают формулы численного интегрирования: прямоугольников, трапецийиСимпсона.

Очевидно, что замена функции f(x) интерполирующим полиномом приводит к образованию погрешности вычисления значения интеграла

где I1 – точное значение интеграла, I – значение интеграла, вычисленного численным методом, а  – погрешность метода.

Отметим, что увеличение числа подынтервалов n (или уменьшение длины шага интегрирования h) ведет к уменьшению погрешности.

 

Метод прямоугольников

Заменим подынтегральную функцию f(x) в пределах элементарного отрезка [xi;xi+1] интерполяционным многочленом нулевой степени (рис.6.4.2-1), то есть постоянной величиной, равной либо f(xi), либо f(xi+1).                                                    

Рис. 6.4.2-1

 

Значение элементарного интеграла равно площади прямоугольника, в первом случае
I = h∙f(xi), а во втором I = h∙f(xi+1), где h = xi+1 - xi. Для определения значения интеграла на отрезке [a;b] найдем суммы элементарных интегралов, взяв в первом случае в качестве
 f(x) – значение подынтегральной функции в левом конце i-го отрезка, а во втором – в правом конце отрезка:

                                                                                             (6.4.2-1)
                                                                                                    (6.4.2-2)

Формула (6.4.2-1) называется формулой левых прямоугольников, а формула
(6.4.-2.2) – формулой правых прямоугольников.

Для вычисления определенного интеграла может быть использована и формула средних прямоугольников (6.4.2-3), в которой на элементарном отрезке интегрирования функция f(x)тоже заменяется интерполяционным многочленом нулевой степени, но равным значению функции в середине отрезка:

                                                                           (6.4.2-3)

Формула трапеций

Разобьем интервал интегрирования [a;b] на n равных отрезков (рис. 6.4.3-1) и восстановим из полученных точек a, х1, x2, …, b перпендикуляры до пересечения с графиком функции. Соединив последовательно точки пересечения, представим площадь полученной криволинейной трапеции как сумму прямолинейных трапеций, площади которых легко подсчитать. Заменив подынтегральную функцию f(x) в пределах элементарного отрезка [xi;xi+1] интерполяционным многочленом первой степени, получим следующие формулы для элементарных площадей:

Рис. 6.4.3-1

 

Тогда общая площадь равна:

Отсюда получаем формулу трапеций:

 

                           (6.4.3-1)

Формула Симпсона

Для получения формулы Симпсона применяется квадратичный интерполирующий полином, следовательно, за элементарный интервал интегрирования принимается отрезок [xi;xi+2]. Поэтому разобьем интервал интегрирования [a;b] наn отрезков, где n=2m – четное число (рис. 6.4.4-1).

Рис. 6.4.4-1

 

Для получения интерполирующей функции на интервале [xi;xi+2] воспользуемся первой интерполяционной формулой Ньютона, используя в качестве узлов интерполяции точки xi, хi+1 и xi+2.

             (6.4.4-1)

В пределах отрезка [xi;xi+2], на котором подынтегральная функция аппроксимирована многочленом (6.4.4-1), получим приближенную формулу Симпсона:

      (6.4.4-2)

Для отрезка [x0;x2]   

Для отрезка [x2;x4]   

Тогда для всего интервала интегрирования [a;b] формула Симпсона выглядит:

или

при                                        (6.4.4-3)


Дата добавления: 2018-05-12; просмотров: 246; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!