Характеристика показателей безопасности



Токсичные элементы являются наиболее распространенными загрязнителями пищевых продуктов. Они имеют важную особенность. Большинство из них относится к рассеянным элементам (микроэлементам), которые присутствуют в микроколичествах повсеместно: в подземных и поверхностных водах, горных породах, почвах, атмосферном воздухе, растениях и животных. С пищей, водой и воздухом эти вещества поступают в организм человека.

При этом по мере загрязненности почв металлами увеличивается их содержание в сельскохозяйственных растениях, а затем и продуктах животного происхождения Потребление пищевых продуктов, содержащих повышенные количества тяжелых металлов, представляет риск для здоровья людей, который может проявляться острыми и хроническими интоксикациями, а также мутагенным, канцерогенным и эмбриотоксическим эффектами. Для предупреждения этих последствий необходим строгий контроль со стороны органов Госсанэпиднадзора за попаданием в пищевую продукцию соединений токсичных элементов как из внешней среды, так и в результате деятельности человека, направленной на интенсификацию процессов производства продуктов питания.

Во всех видах продовольственного сырья и пищевых продуктов нормируются токсичные элементы: свинец, мышьяк, кадмий, ртуть.

Свинец – один из самых распространенных и опасных токсикантов. Он находится в микроколичествах почти повсеместно. Свинец не принадлежит к эссенциальным микроэлементам, а является примесным токсическим элементом. ФАО установила в качестве максимально допустимого поступления свинца для взрослого человека 0,42 мг/сутки (3 мг/нед). В случае, если его поступление превышает эту величину, содержание свинца в организме начинает быстро нарастать. Величина ПДК в питьевой воде - 0,05 мг/л.

В организме взрослого человека усваивается в среднем 10 % поступившего с пищей свинца, в организме детей — 30...40 %. Из крови свинец поступает в мягкие ткани и кости, где депонируется в виде фосфата.

Механизм токсического действия свинца имеет двойную направленность. Во-первых, блокада функциональных SH-групп белков и, как следствие, - инактивация ферментов, во-вторых, проникновение свинца в нервные и мышечные клетки, образование лактата свинца, затем фосфата свинца, которые создают клеточный барьер для проникновения ионов Са +.

Свинец воздействует в основном на кроветворную, нервную, пищеварительную системы и почки. Он ингибирует в костном мозге ряд ферментов, которые определяют синтез гема, в результате чего развивается анемия, являющаяся одним из давно известных симптомов хронического отравления свинцом.

Из организма свинец выводится с фекалиями (90 %), мочой, а также с грудным молоком. Биологический период полувыведения свинца из мягких тканей около 20 дней, а из костей - до 20 лет.

В сельскохозяйственную продукцию свинец может попадать из почвы, на которой выращивается, и грунтовых вод; в продукты животноводства - из кормов и питьевой воды[11].

 Ртуть(Hg)– один из самых опасных и высокотоксичных элементов, обладающий способностью накапливаться в растениях и в организме животных и человека, т. е. является ядом кумулятивного действия. Ртуть - единственный металл, представляющий собой при комнатной температуре жидкость, однако она может существовать в различных физических состояниях и химических формах. Кроме элементного состояния (Hg°), ртуть образует неорганические и органические соединения, в которых проявляет степень окисления +1 и +2.

Токсичность ртути зависит от вида ее соединений, которые по-разному всасываются, метаболизируются и выводятся из организма. Механизм токсического действия ртути связан с ее взаимодействием с сульфгидрильными группами белков.

Неорганические соединения ртути нарушают обмен аскорбиновой кислоты, пиридоксина, кальция, меди, цинка, селена; органические - обмен белков, цистеина, аскорбиновой кислоты, токоферолов, железа, меди, марганца, селена.

В продуктах ртуть может присутствовать в трех видах: в виде атомарной ртути, а также ее неорганических и органических соединений. Случаи загрязнения пищевых продуктов металлической ртутью являются очень редкими. Ртуть плохо адсорбируется на продуктах и легко удаляется с их поверхности.

В организм человека ртуть поступает в наибольшей степени с рыбопродуктами, в которых ее содержание может многократно превышать ПДК. Поэтому в Финляндии, например, рекомендуется есть рыбу только 1...2 раза в неделю. Однако отказ от питания рыбой тоже не является надежной защитой от поступления в организм ртути, поскольку рыбную муку используют в качестве кормовой добавки для домашних животных. Растительные продукты также могут быть источником ртути, если выращиваются на загрязненных почвах или обрабатываются ртутьсодержащими пестицидами.

По рекомендациям ФАО/ВОЗ человек может получать с суточным рационом около 0,05 мг ртути. Безопасным уровнем содержания ртути в крови считают 50-100 мкг/л.

Высокая токсичность ртути обусловливает очень низкие значения ПДК: 0,0003 мг/м3 в воздухе и 0,0005 мг/л в воде.

В природе кадмий не встречается в свободном виде и не образует специфических руд. Его получают как сопутствующий продукт при рафинировании цинка и меди. Кадмий легко образует пары, относится к числу сильно ядовитых веществ и не является необходимым элементом для млекопитающих.Период полувыведения кадмия из организма составляет 13 – 40 лет.

Как металлический кадмий, так и его соли оказывают выраженное токсическое действие на людей и животных. Механизмы токсичности кадмия заключаются в том, что он ингибирует ДНК-полимеразу, нарушает синтез ДНК (стадию расплетения), разделяет окислительное фосфорилирование в митохондриях печени. Патогенез отравления кадмием включает также взаимодействие его с высокомолекулярными белками, особенно тиолсодержа-щими ферментами.

Механизм токсического действия кадмия связан с блокадой сульфгид-рильных групп белков; кроме того, он является антагонистом цинка, кобальта, селена, ингибирует активность ферментов, содержащих указанные металлы. Известна способность кадмия нарушать обмен железа и кальция. Все это может привести к широкому спектру заболеваний: гипертоническая болезнь, анемия, ишемическая болезнь сердца, почечная недостаточность и другие. Отмечены канцерогенный, мутагенный и тератогенный эффекты кадмия [19].

В растения кадмий поступает за счет корневого поглощения и через листья. У многих сельскохозяйственных культур выявлена чувствительность к кадмию. Под его действием у растений может развиться хлороз, искривления стебля, бурые некротические пятна на листьях и т.д. Однако чаще симптомы начинающегося отравления растений этим металлом не проявляются на внешнем виде растения, а только снижается урожайность[15].

Мышьяк (As)принадлежит к тем микроэлементам, необходимость которых для жизнедеятельности организма не доказана. Мышьяк широко распространен в окружающей среде. Он встречается в природе в элементном состоянии, а также в больших количествах в виде арсенитов, арсеносульфидов и органических соединений. В морской воде содержится около 5 мкг/л мышьяка, в земной коре — 2 мг/кг.

Токсичность мышьяка зависит от его химического строения. Элементный мышьяк менее токсичен, чем его соединения. Арсениты (соли трехвалентного мышьяка) более токсичны, чем арсенаты (соли пятивалентного мышьяка). В целом соединения мышьяка можно расположить в порядке снижения токсичности следующим образом: арсины > арсениты > арсенаты > метиларсоновая и диметиларсоновая кислоты.

Арсениты являются тиоловыми ядами, ингибирующими различные ферменты. Они взаимодействуют с тиоловыми группами белков, цистеина, липоевой кислоты, глутатиона, кофермента А, присутствующими в организме, нарушая в конечном итоге цикл трикарбоновых кислот. Кроме того, ар-сениты влияют на митоз, синтез и распаривание ДНК, что связано с блокированием ими тиоловых групп ДНК - полимеразы.

Соединения мышьяка хорошо всасываются в пищеварительном тракте. Выделение их из организма происходит в основном через почки (до 90 %) и пищеварительный канал. Он также может выделяться с грудным молоком и проникать через плацентарный барьер[29].

Пищевая продукция, находящаяся в обращении на таможенной территории Таможенного союза в течение установленного срока годности, при использовании по назначению должна быть безопасной.

Допустимые уровни содержания токсичных элементов, митоксинов, пестицидов и радионуклидов в шоколаде приведеныв таблице 10.

Таблица 10 – Допустимые уровни содержания токсичных элементов

Показатели Допустимый уровень мг/кг, не более
1 2

                                                               Токсичные элементы:

Свинец 1,0
Мышьяк 1,0
Кадмий 0,5
Ртуть 0,1

Микотоксины: контроль по сырью

Афлотоксин В1 0,005

 

Государства – члены Таможенного союза обязаны предпринять все меры по недопущению выпуска в обращение на таможенной территории Таможенного союза пищевой продукции, не соответствующей требованиям настоящего технического регламента, а также ее изъятию из обращения.

Уполномоченный орган государства – члена Таможенного союза обязан уведомить уполномоченные органы других государств-членов Таможенного союза о принятом решении с указанием причин принятия данного решения и предоставлением доказательств, разъясняющих необходимость принятия данной меры[12].


Дата добавления: 2018-05-12; просмотров: 381; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!