Уравнение движения ТТ, вращающиеся вокруг неподвижной силы.




 

Кинетическая энергия ТТ, совершающего поступательное и вращательное движение.

Кинетическая энергия вращающегося тела

В случае плоского движения тела, например цилиндра, скатывающегося с наклонной плоскости без скольжения, энергия движения складывается из энергии поступательного

вижения и энергии вращения: где т — масса катящегося тела; vc —скорость центра масс тела; Jc – момент инерции тела относительно оси, проходящей через его центр масс; ш -- угловая скорость тела.

 


 

Место колебательного движения в природе и технике.

Колеба́ния — это повторяющийся в той или иной степени во времени процесс изменения состояний системы около точки равновесия. Например, при колебаниях маятника повторяются отклонения его в ту и другую сторону от вертикального положения; при колебаниях в электрическом колебательном контуре повторяются величина и направление тока, текущего через катушку. Колеблются крылья насекомых и птиц в полете, высотные здания и высоковольтные провода под действием ветра, маятник заведенных часов и автомобиль на рессорах во время движения

 

 


 

31.Свободные гармонические колебания. Метод векторных диаграмм.

Гармонические колебания - периодический процесс, в котором рассматриваемый параметр изменяется по гармоническому закону. Если на колебательную систему не действуют внешние переменные силы, то такие колебания называются свободными. Рассмотрим массу, которая колеблется на пружине как показано на рисунке. Если амплитуда колебаний мала, то координата x массы по вертикальной оси изменяется по гармоническому закону:x= Asin(wt + j)где A - амплитуда колебаний, t - время, j - фаза колебаний,w- угловая частота колебаний,w= 2pf=2p /T, f - частота колебаний, T - период колебаний.Гармонические колебания изображаются графически методом вращающегося вектора амплитуды или векторных диаграмм.Из произвольной точки О, выбранной на оси х под углом > , равным начальной фазе колебания, откладывается вектор , модуль которого равен амплитуде А, рассматриваемого колебания. Если этот вектор будет вращаться вокруг точки О с угловой скоростью > , то проекция на ось х будет совершать колебания по закону . Процессы в параметрической колебательной системе с обной степенью свободы. Энергетическое рассотрение стационарных колебаний в системах с одной степенью свободы.Экспоненциальная форма записи гармонических колебаний.

Согласно формуле Эйлера для комплексных чисел

Таким образом, сила пропорциональна смещению материальной точки и направлена в сторону, противоположную (к положению равновесия). Такая зависимость от смещения характера для упругих сил поэтому силы, которые аналогичным образом зависят смещения, называются квазиупругими.

Гармонический осциллятор.

Гармоническим осциллятором называется система, которая совершает колебания, описываемые выражением вида d2s/dt2 + ω02s=0 или

где две точки сверху означают двукратное дифференцирование по времени. Колебания гармонического осциллятора есть важный пример периодического движения и служат точной или приближенной моделью во многих задачах классической и квантовой физики. В качестве примеров гармонического осциллятора могут быть пружинный, физический и математический маятники, колебательный контур (для токов и напряжений настолько малых, что можно было бы элементы контура считать линейными).
1. Пружинный маятник — это груз массой m, который подвешен на абсолютно упругой пружине и совершает гармонические колебания под действием упругой силы F = –kx, где k — жесткость пружины. Уравнение движения маятника имеет вид
или Из формулы вытекает, что пружинный маятник совершает гармонические колебания по закону х = Асоs(ω0t+φ) с циклической частотой и периодом Формула верна для упругих колебаний в границах, в которых выполняется закон Гука, т. е. если масса пружины мала по сравнению с массой тела. Потенциальная энергия пружинного маятника, используя (2) и формулу потенциальной энергии предыдущего раздела, равна
2. Физический маятник — это твердое тело, которое совершает колебания под действием силы тяжести вокруг неподвижной горизонтальной оси, которая проходит через точку О, не совпадающую с центром масс С тела
Если маятник из положения равновесия отклонили на некоторый угол α, то, используя уравнение динамики вращательного движения твердого тела, момент M возвращающей силы
где J — момент инерции маятника относительно оси, которая проходит через точку подвеса О, l – расстояние между осью и центром масс маятника, Fτ ≈ –mgsinα ≈ –mgα — возвращающая сила (знак минус указывает на то, что направления Fτ и α всегда противоположны; sinα ≈ α поскольку колебания маятника считаются малыми, т.е. маятника из положения равновесия отклоняется на малые углы). Уравнение запишем как или Принимая получим уравнение идентичное с (1), решение которого (1) найдем и запишем как:
Из формулы (6) вытекает, что при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой ω0 и периодом
где введена величина L=J/(ml) — приведенная длина физического маятника.
Точка О' на продолжении прямой ОС, которая отстоит от точки О подвеса маятника на расстоянии приведенной длины L, называется центром качаний физического маятника (рис. 1). Применяя теорему Штейнера для момента инерции оси, найдем
т. е. ОО' всегда больше ОС. Точка подвеса О маятника и центр качаний О' имеют свойство взаимозаменяемости: если точку подвеса перенести в центр качаний, то прежняя точка О подвеса будет новым центром качаний, и при этом не изменится период колебаний физического маятника.
3. Математический маятник — это идеализированная система, состоящая из материальной точки массой m, которая подвешена на нерастяжимой невесомой нити, и которая колеблется под действием силы тяжести. Момент инерции математического маятника где l — длина маятника.

Поскольку математический маятник есть частный случай физического маятника, если предположить, что вся его масса сосредоточена в одной точке — центре масс, то, подставив (8) в (7), найдем выражение для периода малых колебаний математического маятника
если приведенная длина L физического маятника равна длине l математического маятника, то периоды колебаний этих маятников одинаковы. Значит, приведенная длина физического маятника — это длина такого математического маятника, у которого период колебаний совпадает с периодом колебаний данного физического маятника.


Дата добавления: 2018-05-12; просмотров: 435; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!