Поле в магнетиках. Диамагнетизм



1. Магнетики. Магнитная проницаемость. Магнетиком называют любое вещество в магнитном поле. Сила взаимодействия между элементарными токами dF, определяемая законом Ампера (12.6), зависит от того, в каком веществе находится взаимодействующие токи. Её силу можно представить так: dF = mdF0.                                                                   (17.1)

где dF0 - сила взаимодействия между этими токами в вакууме. Некоторые вещества уменьшают силу взаимодействия токов по сравнению с вакуумом, другие – увеличивают.

Безразмерное число μ, показывающее во сколько раз сила взаимодействия между токами в веществе больше силы взаимодействия в вакууме, называют магнитной проницаемостью вещества.

Магнитная проницаемость μ – всегда положительное число, больше или меньше 1. Она входит в формулы законов Ампера, Био-Савара-Лапласа, электромагнитной индукции и в их многочисленные следствия.

2. Вектор намагниченности. Магнитная восприимчивость. Магнитные свойства тел обусловлены движением электрических зарядов в атомах и молекулах. Любой движущийся в оболочке атома электрон в магнитном отношении эквивалентен элементарному контуру с током, имеющему определённый магнитный момент, называемый орбитальным.

Кроме того, каждый электрон имеет собственный магнитный момент, называемый спиновым. Спиновый момент в начале связывался с предполагаемым вращением электрона вокруг своей оси. Когда позднее выяснилось, что эта наглядная модель неприменима, спиновый момент стали просто полагать определённым качеством электрона, таким как масса и заряд. Магнитный момент атома слагается из орбитальных и спиновых магнитных моментов всех его электронов и магнитного момента ядра.

Полный магнитный момент единицы объёма вещества называют вектором намагничения вещества и обозначают J, Он равен сумме магнитных моментов всех частиц в единице объёма. В несильных полях вектор намагничения пропорционален индукции магнитного поля, .                                                                                  (17.2)

Магнитная постоянная μ0 введена здесь для уравнивания размерностей так, чтобы коэффициент пропорциональности χ был безразмерным числом. Величину χ называют магнитной восприимчивостью вещества. Между μ и χ линейная связь: μ = χ + 1.             (17.3)

Магнитная восприимчивость χ может быть как положительным, так и отрицательным числом. В зависимости от значений χ и μ все материалы делятся на три большие группы:

χ < 0,    μ < 1      – диамагнетики;

χ > 0,    μ > 1         – парамагнетики;

χ >> 0,  μ >> 1      – ферромагнетики.

3. Диамагнетики – это вещества, магнитный момент атомов которых в отсутствие внешнего магнитного поля равен нулю. К диамагнетикам относятся все инертные газы, металлы Cu, Ag, Au, Pb, Hg, Zn, а также Sb, I (йод), C, Si, S, H2O, N2, Сo2 и большинство органических соединений.

При внесении диамагнетика во внешнее поле суммарный магнитный момент каждого атома становится отличным от нуля и направленным против внешнего поля. Всё вещество в целом приобретает направленный против поля магнитный момент. В результате магнитное поле в веществе диамагнетика ослабляется, а сам диамагнетик выталкивается из поля.

4. Механизм ослабления магнитного поля в диамагнетиках объяснил в 1903 – 905 г.г. Поль Ланжевен. В то время ещё не были разработаны динамические модели атома Бора и Резерфорда. Было известно лишь, что в состав наружной оболочки атомов входит электрон – частица, хорошо изученная в опытах с катодными лучами и с фотоэффектом. Поэтому в основу своих рассуждений Ланжевен положил гипотезу Ампера о молекулярных круговых токах.

Атом в теории Ланжевена представляет собой положительно заряженное ядро, вокруг которого по круговым траекториям движутся электроны. Объяснение Ланжевена сделано в рамках классической электронной теории. То есть он полагал, что электроны подчиняются законам Ньютона, а их энергия может изменяться непрерывно.

Рассмотрим состояние отдельного электрона в атоме, когда внешнего магнитного поля нет, и состояние, когда внешнее поле есть. Полагаем, что движение электронов в атоме не связаны между собой.

а. Поля нет, B = 0. Полагаем, что рассматриваемый электрон движется во внешней оболочке вокруг центрально-симметричного иона. В отсутствие внешнего поля уравнение движения его имеет вид: .                                                                    (17.4)

Здесь m – масса электрона, ω – угловая скорость его обращения вокруг иона, fКл - кулоновская сила притяжения электрона к положительному иону (рис.120-а).

Магнитный момент диамагнитных атомов в отсутствие внешнего поля равен нулю. Но это значит, что орбитальный магнитный момент электрона р равен по величине противоположно направленному магнитному моменту иона р.

(Спиновые магнитные моменты здесь не принимаются во внимание. Это не влияет на строгость рассуждений, поскольку при включении поля В они не меняются).

б. Внешнее поле  В­­ р. При включении внешнего магнитного поля В на электрон кроме кулоновской будет действовать ещё магнитная составляющая силы Лоренца fm. Если вектор B сонаправлен с орбитальным моментом электрона р (рис.120-б), то сила fm направлена по радиусу вращения в сторону, противоположную кулоновской силе. Угловая скорость обращения электрона изменяется на величину Dw, а уравнение движения принимает вид: - m(w + Dw)2r= fКл + fm.                                                      (17.5)

Вычтем из (17.4) уравнение (17.5) - mw2r + mw2r + 2mwDw r + mw(Dw)2r= - fm. (17.6)

Пренебрегаем членом, содержащим (Dw)2. Спроектировав уравнение (17.6) на радиус-вектор r и приняв во внимание, что вектор B перпендикулярен плоскости вращения электрона, получаем: 2m(w r)Dw = - evB. Так как ω r = v, то .          (17.7)

 

Здесь e – заряд движущегося вокруг иона электрона, в данной формуле – положительное число. При заранее заданном направлении орбитального момента р относительно магнитного поля B изменение знака заряда e орбитальной частицы компенсируется изменением направления её движения и не влияет на направление силы Лоренца.

Итак, при В­­ р электрон тормозится, его частота обращения уменьшается, уменьшается и орбитальный момент р. Равновесие между орбитальным моментом р и моментом иона р нарушается. Момент иона становится больше, чем орбитальный момент электрона. Диамагнитный атом приобретает во внешнем поле магнитный момент, направленный против внешнего поля B. В результате поле в диамагнетике ослабляется.

в. Поле В­¯р (рис.120-в). В этом случае сила Лоренца меняет направление, её проекция на радиус становится отрицательной. Поэтому вместо - evB в формуле (17.7) получается + evB, и выражение частоты принимает вид: Dw = - eBç2m.        (17.8)

Здесь все величины – положительные числа.

Частота обращения электрона в этом случае увеличивается, орбитальный магнитный момент электрона р становится больше по величине магнитного момента иона р. В результате диамагнитный атом приобретает магнитный момент, и в этом случае направленный против поля В. Поле В ослабляется.

Заметим, что в первом случае, когда В­­р, атом находится в устойчивом равновесии. Во втором случае, когда В­¯р, равновесие неустойчиво, вероятность его реализации ничтожна.

5. Относительное изменение орбитального магнитного момента электрона Dрçр можно найти, используя формулу момента кругового тока (13.14). Если электрон совершает вокруг ядра в единицу времени ν = ωç2π оборотов, то это равносильно тому, что по орбите как по проводнику идёт ток i = = eωç2π. Тогда . (17.9)

Здесь r – радиус орбиты электрона. Изменение орбитального момента электрона обусловлено изменением угловой скорости его обращения, .                  (17.10)

Относительное изменение момента равно .                                (17.11)

Скорость обращения электрона ω в невозмущённом атоме найдётся из уравнения (17.4). Полагая заряд иона + e, спроектировав уравнение на радиус и подставив в него выражение кулоновской силы  fКл = e2ç4πε0r2,получаем: .        (17.12)

Изменение скорости Δω по величине определяется формулой (17.8). Подставляем (17.8) и (17.12) в формулу (17.11). .         (17.13)

Поля, создаваемые обычными электромагнитами, достигают B = 1 Tл. Радиус атомов r ≈ 10-10 м, масса электрона m ≈ 10-30 кг. .

6. Ларморовская прецессия электронных орбит. Рассмотренные в п.4 случаи, когда векторы В и р параллельны или антипараллельны, являются идеализациями. В действительности ориентация атомов в газах, жидкостях, в поликристаллах носит случайный характер. Поэтому угол a между векторами B и р заключён в интервале от 0 до p.

Действующее на элементарный круговой ток однородное магнитное поле B создаёт пару сил с моментом  (См. §14, п.2, формула 14.4).

Движущиеся по круговой орбите электрон обладает механическим моментом (импульса) L = mυr . Поэтому электронная орбита представляет собой гироскоп. Под действием момента пары сил M гироскоп прецессирует с угловой скоростью Ω вокруг оси OZ, параллельной полю B (рис.121).

Найдём угловую скорость прецессии Ω. Для этого рассмотрим силы, действующие на электрон в неинерциальной системе отсчёта, связанной с орбитой и равномерно вращающейся с угловой скоростью Ω вокруг оси OZ инерциальной системы, связанной с магнитным полем B.

Кулоновская сила fКл, удерживающая электрон на круговой орбите, действуют внутри атома и не влияет на прецессионное движение электрона.

Прецессию создают действующие на электрон внешние силы. Это сила Лоренца  и две силы инерции: сила Кориолиса  и центробежная сила инерции .

Здесь va - скорость движения электрона относительно магнитного поля B. То есть это скорость в ИСО. Она равна сумме относительной v (скорости движения электрона в атоме) и переносной  (скорости, обусловленной прецессией атома), .

Логично полагать, что угловая скорость прецессии Ω – величина того же порядка, что и изменение скорости Δω, найденное в п.4. То есть эта величина на 5-6 порядков меньше величины ω. Но это значит, что и переносная скорость . На несколько порядков меньше скорости v электрона в атоме. Поэтому пренебрежём переносной скоростью и будем полагать va = v. Из-за малости Ω пренебрежём так же членом, содержащим Ω2, то есть центробежной силой инерции .

В результате кроме внутренней кулоновской силы, удерживающей электрон на окружности, на него действуют ещё две внешние – сила Кориолиса fкор и сила Лоренца fm. Обе эти силы лежат на радиусе r^, перпендикулярном к оси OZ.

При равномерном вращении НИСО сумма этих сил равна нулю.

, .                                                                 (17.14)

Отсюда .                                                                                  (17.15)

Заряд электрона e здесь – отрицательное число. Его магнитный момент р противоположен механическому моменту импульса  (рис.121). Взаимная ориентация векторов р и L меняется при смене знака орбитальной частицы.

Формула (17.15) определяет угловую скорость прецессии электронной орбиты в магнитном поле. Эта ларморовская прецессия определяет реальный диамагнетизм, присущий атомам всех химических элементов.

При включении магнитного поля внутреннее состояние электрона на орбите не меняется. Это значит, что не меняется частота ω его обращения. Просто орбита электрона начинает прецессировать вокруг оси OZ, параллельной линиям B, с угловой скоростью W.

Полученное в пункте 4 формальное изменение частоты обращения электрона Δω можно толковать как результат наложения на обращение электрона, происходящее с частотой ω, ларморовской прецессии его орбиты с частотой Δω = Ω.

7. Магнитная восприимчивость диамагнетиков. Магнитный момент атомов диамагнетиков появляется лишь при включении внешнего поля B. Он равен сумме изменений орбитальных моментов электронов, обусловленных прецессией их орбит.

Чем меньше угол α между вектором B и вектором орбитального момента р, тем большую площадь в плоскости XOY, перпендикулярную B, ометает электрон при прецессии его орбиты, тем более абсолютная величина Dр.

На рис.122 показано сечение области, в которой находится прецессирующий электрон (Заштрихованное кольцо внизу рисунка). Расстояние электрона от оси OZ изменяется в пределах от rmin до rmax . Оно тем больше, чем меньше угол θ.

Изменение орбитального магнитного момента электрона равно произведению тока его прецессионного движения  i = eΩç2π на площадь токового контура .

,        или .           (17.16)

Допустим, что атом содержит z электронов, которые в своём движении не влияют друг на друга. Так как в диамагнетике в отсутствие поля B , то это значит, что расположение электронов в атоме симметрично. Их средние расстояния по осям одинаковы.

, Þ   .                                          (17.17)

Подставляем в (17.16) и умножаем на число электронов z . (17.18)

Если концентрация атомов n, то вектор намагничения . (17.19)

Так как n = rNAçM, где r - плотность вещества, М – его малярная масса, NA – число Авогадро, то окончательно поучаем: .                            (17.20)

Отсюда получаем магнитную восприимчивость c вещества диамагнетика в классической теории Ланжевена. .                                              (17.21)

Таблица 17.1

Вещество

Опыт

Теория

m c, 10-6 m c , 10-6
Висмут Bi 0,999824 -176 0,999852 -148
Золото Au 0,999961 -39 0,999892 -108
Медь Cu 0,999990 -10 0,999954 -46
Свинец Pb 0,999984 -16 0,999905 -95
Серебро Ag 0,999981 -19 0,999933 -67

В таблице 17.1 приведены значения величин m и c, полученные в опыте, и значения величин m и c, вычисленные по формуле (17.21) и (17.3).

Сравнение результатов показывает, что теория Ланжевена неплохо удовлетворяет эксперименту. Даже самые большие расхождения по величине c не превышают одного порядка. Что удивительно, если учесть множество нестрогостей в теории Ланжевена.

Заметим, что диамагнетизм – это проявление закона электромагнитной индукции. При включении магнитного поля возбуждающееся при нарастании индукции В вихревое электрическое поле совершает работу по генерации индукционного тока – прецессионного движения электронов. Согласно правилу Ленца направление индукционного тока таково, что его магнитное поле препятствует нарастанию внешнего поля В, то есть ослабляет его.

Внутриатомное движение электронов не затухает. Поэтому ослабление поля В сохраняется до тех пор, пока поле В не начнёт исчезать. Уменьшаясь, оно возбуждает вихревое электрическое поле, которое затормаживает прецессию электронов.

Пара - и ферромагнетики

1. Парамагнетики – это вещества, у которых μ > 1 и χ > 0. К ним относятся щелочные металлы, Ca, Mg, Cr, Mn, Sn, Pb, редкоземельные элементы и другие.

В отсутствие внешнего магнитного поля магнитный момент каждого отдельного атома парамагнетика не равен нулю, как в диамагнетиках. Но моменты атомов ориентированы хаотично, поэтому магнитный момент единицы объём (вектор намагничения) парамагнетика в отсутствие внешнего поля также равен нулю.

При включении внешнего поля моменты атомов начинают прецессировать вокруг оси, параллельной линиям поля. В результате появляется отличная от нуля проекция магнитных моментов атомов на эту ось. Поле в магнетике усиливается. (См. §14, пункт 1).

Таблица 18.1

Вещество μ χ, 10-6
Алюминий Al 1, 000 023 +23
Ванадий V 1, 000 343 +343
Вольфрам W 1, 000 176 +176
Магний Mg 1, 000 017 +17
Марганец Mn 1, 001 000 +1000
Олово Sn 1, 000 002 +2
Платина Pt 1, 000 250 +250
Хром Cr 1, 000 330 +330

Из-за теплового движения ориентация атомных магнитных моментов является частичной, поэтому при несильных магнитных полях намагниченность парамагнетика растёт линейно с индукцией поля В. .       (18.1)

В парамагнетиках также существует диамагнетизм, но здесь он лишь уменьшает магнитные моменты атомов и перекрывается эффектом ориентации магнитных моментов атомов по внешнему полю. Поэтому суммарная магнитная восприимчивость парамагнетиков положительна, χ > 0 (таблица 18.1). 

Термин “диа-” и “парамагнетизм” ввёл в 1945 г. М. Фарадей.

2. Закон Кюри для парамагнетиков. С повышением температуры Т при неизменной индукции внешнего поля возрастает дезориентирующее действие теплового движения частиц. Поэтому магнитная восприимчивость парамагнетиков в простейшем случае убывает по закону Кюри. ,       (Пьер Кюри, 1895)                                                        (18.2)

где С – постоянная Кюри, зависящая от природы вещества.

Закону Кюри подчиняются газы (О2 , NO), пары щелочных металлов, разбавленные жидкие растворы парамагнитных солей редкоземельных элементов.

Кристаллические парамагнетики лучше следуют закону Кюри – Вейсса

, (Пьер Вейсс, 1907)                                                                       (18.3)

где С и Δ – константы вещества.

3. Природа парамагнетизма. Существование у атомов магнитных моментов, обуславливающих парамагнетизм веществ, связано с движением электронов в оболочке атома (орбитальный парамагнетизм), со спиновым моментом электронов (спиновый парамагнетизм), с магнитными моментами ядер атомов (ядерный парамагнетизм). Магнитные моменты атомов и молекул создаются, в основном, спиновыми и орбитальными моментами их электронных оболочек. Они примерно в 1000 раз превосходят магнитные моменты атомных ядер.

Парамагнетизм металлов слагается из парамагнетизма электронов проводимости и парамагнетизма электронных оболочек атомов кристаллической решётки. Движение электронов проводимости в металлах практически не меняется при изменении температуры (см. §9). Поэтому и парамагнетизм, обусловленный электронами проводимости, также не зависит от температуры.

Например, электронные оболочки ионов щелочных и щелочноземельных металлов не имеют магнитных моментов. Парамагнетизм этих элементов обусловлен исключительно электронами проводимости. Поэтому их магнитная восприимчивость практически не зависит от температуры.

В 1906 г Поль Ланжевен построил классическую теорию парамагнетизма. Для вещества парамагнетика, состоящего из практически невзаимодействующих атомов, магнитная восприимчивость в его теории определена формулой ,             (18.4)

где k – постоянная Больцмана, pm – магнитный момент атома, NA – число Авогадро, Т – температура.

4. Ферромагнетики (от лат. ferrum – железо) – твёрдые кристаллические вещества, обладающие по сравнению с парамагнетиками высокой способностью намагничения. Магнитная проницаемость μ ферромагнетиков может достигать десятков и сотен тысяч.

Явление ферромагнетизма было открыто в начале XIX века после появления источников тока Вольты. Оказалось, что железный сердечник, внесённый в соленоид, при том же намагничивающем токе сильно увеличивает способность соленоида притягивать к себе железные опилки.

Ферромагнетизм существует только у веществ с парамагнитными атомами, магнитные моменты которых не равны нулю. В объёме ферромагнетика самопроизвольно образуются микроскопические области – домены, в пределах которых магнитные моменты атомов сонаправлены. Это квантовый эффект. При температурах ниже некоторого предела (точки Кюри) эти домены существуют независимо от наличия внешнего магнитного поля. Феноменологически домены удобно трактовать по Амперу как воображаемые микроконтуры с круговым током. Поскольку магнитные моменты доменов ориентированы хаотично, то усреднённое по макрообъёму поле в ненамагниченных ферромагнетиках равно нулю. При внесении ферромагнетика во внешнее поле моменты доменов стремятся повернуться по полю (см. §14 пункт 2). В результате магнитное поле внутри ферромагнетика усиливается.

Размеры доменов на три порядка больше размера атомов. Поэтому тепловое движение нарушает ориентацию доменов по полю слабее, чем ориентацию отдельных атомов парамагнетика. Однако при достижении определённой для каждого материала температуры намагниченность доменов скачком исчезает, и ферромагнетик превращается в парамагнетик. Эта предельно высокая температура называется точкой Кюри. В точке Кюри происходит фазовый переход 2-го рода. При этом одновременно скачкообразно изменяются удельная электропроводность и теплоёмкость вещества.

Среди химических элементов ферромагнетиков не много. Наиболее заметно ферромагнетизм выражен у железа, кобальта, никеля. Максимальное значение магнитной проницаемости μmax составляет у них сотни и тысячи единиц (таблица 18.2). Внешние электроны у этих металлов находятся в 3d состоянии.

Элемент

μмакс

Точка Кюри

К ˚С
Железо Fe литое 24 000 1043 770
-²- электролитическое 340 000    
-²- монокристалл 1 430 000    
Кобальт Co 175 1403 1130
Никель Ni 1 120 631 358

 

Гадолиний Gd   289 16
Тербий Tb   223 -50
Диспрозий Dy   87 -186
Гольмий Ho   20 -253
Эрбий Er   19,6 -253,4

Таблица 18.2            Ферромагнетизм редкоземельных металлов гадолиния Gd, тербия Tb, диспрозия Dy, гольмия Ho и эрбия Er выражен слабее. Наблюдать и использовать его трудно из-за низких значений точки Кюри.

5. Изменение магнитной индукцииВ поля в ферромагнетиках можно сделать как на основе закона электромагнитной индукции Фарадея с помощью тороидального сердечника из исследуемого материала. В сердечнике пропиливается узкий разрез так, чтобы его ширина l была по крайней мере на два порядка меньше осевой длины сердечника, l << 2pR (рис.123). Это условие позволяет пренебречь рассеиванием магнитного поля в разрезе и полагать, что индукция В в зазоре такая же, как и внутри сердечника. Если по первичной обмотке с числом витков n1 пропускать намагничивающий ток i1 , то в сердечнике и в зазоре будет возбуждаться магнитное поле В с потоком Ф = BS , где S – площадь сечения сердечника.

Внесём в зазор плоскую измерительную катушку с числом витков n2 , концы которой присоединены к баллистическому гальванометру БГ. (Его описание см. в работе 15 лабораторного практикума по физике, часть 3, электричество, с.77). Дождавшись успокоения стрелки гальванометра, быстро выдёргиваем катушку.

Поскольку магнитный поток, пронизывающий катушку, меняется при этом от Ф2 до 0, по цепи измерительной катушки проходит заряд q = kФ2 . Если площадь сечения катушки S2 < S, то Ф2 = ФS2çS. Коэффициент пропорциональности k определяется параметрами установки. Найдём его. ЭДС индукции в измерительной катушке

.                                                      (18.5)

Если сопротивление цепи измерительной катушки равно r2 , то по ней протекает индукционный ток ,       или .                           (18.6)

После интегрирования получаем: , Þ . (18.7)

Магнитную проницаемость m вещества тороида можно найти из формулы (13.9), определяющей индукцию поля В в тороиде, где R – радиус осевой окружности тороида.

,              Þ   .                              (18.8)

Рассмотренный здесь метод измерения В и m приближённый, поскольку мы пренебрегаем магнитным сопротивлением разреза в тороиде. Но он прост в реализации и в теории. Более точные методы, не требующие разрезания сердечника, основаны на переменных токах.

6. Магнитный гистерезис. Первым подробно изучал намагничивание мягкого железа в 1878 г. Александр Столетов. Результаты, к которым он пришёл, в следующем.

Перед началом измерений исследуемый ферромагнетик нужно прокаливать (нагревать выше точки Кюри), благодаря чему исчезает его остаточная намагниченность. Установка примерно соответствовала схеме на рис.123.

Вначале постепенно увеличивался, а затем уменьшался до нуля намагничивающий ток i1 . При каждом токе баллистическим гальванометром измерялась индукция В. После этого переключателем Пк направление тока i1 менялось, и измерения индукции В повторялись уже при токе i1 другого направления.

Зависимость B(i1), показанная на рис.124, называется петлёй гистерезиса (от греч. hysteresis - отставание). Чтобы графики, полученные для разных образцов с разной геометрией, можно было сравнивать между собой, по горизонтальной оси откладывают не тока  i1 , а пропорциональный току параметр H = n1 i1 / 2 p R. Это следует из формулы (13.9) для магнитной индукции поля в тороиде, .                                 (18.9)

Если бы магнитная проницаемость m вещества тороида оставалась постоянной, то начальная кривая намагничивания ОА была бы прямой линией.

Найденная Столетовым зависимость m(Н) показана на рис.125. Вначале m быстро растёт до mmax , затем начинает уменьшаться и при больших намагничивающих токах стремится к 1. Ферромагнетик переходит в состояние насыщения, на петле гистерезиса оно начинается с точки А. Далее рост индукции В идёт исключительно за счёт увеличения тока намагничивания i1.


Благодаря насыщению намагничивания использование ферромагнитных сердечников для получения сильных полей, больших 1 Тл, бесполезно. Сильные и сверхсильные магнитные поля получают с помощью катушек с током без ферромагнитных сердечников.

При уменьшении тока i1 индукция В убывает по кривой АС. При i1 = 0 B ¹ 0. Железный сердечник сохраняет остаточную намагниченность Вост , которая позволяет делать из железа постоянные магниты. Чтобы устранить намагниченность сердечника, нужно пропускать ток i1 обратного направления и такой величины, чтобы параметр Н соответствовал точке D.

При дальнейшем нарастании обратного тока i1 в точке Е также достигается состояние насыщения, и далее процесс идёт аналогично. Значения параметра H, соответствующего точкам D и G, при котором снимается остаточная намагниченность, называется коэрцитивной силой (от лат. coercitio - удерживаю).

Если образец доходит до состояния насыщения (точки А и Е), то получается максимальная петля гистерезиса. Если насыщение не достигается, Петля называется частной. Она всегда находится внутри максимальной петли.

Суть явления гистерезиса в том, что на величину магнитной индукции В влияет предыстория состояния ферромагнетика. Благодаря этому одному и тому же значению намагничивающего тока i1 в области начальной кривой соответствуют 3 разных значения В (точки пересечения с вертикалью при i = I на рис.124).

Чтобы перемагнитить образец, ток i1 должен совершать работу, которая пропорциональна площади петли гистерезиса. Эта работа превращается в тепло. Материалы с малой площадью петли называются магнитно–мягкими. Они сравнительно мало нагреваются и применяются в цепях переменных токов. Материалы с большой площадью петли называются магнитно–жёсткими. Из них делают постоянные магниты.

7. Магнитострикция (от магнито – и лат. strictio – сжатие, натягивание) – изменение формы и размеров магнетика при намагничивании. Наиболее заметна и имеет практическое значение магнитострикция в ферромагнетиках. В диа- и парамагнетиках она ничтожна. Открыл магнитострикцию Джеймс Джоуль в 1842 г.

Это явление обусловлено тем, что в результате намагничивания образца поворачиваются магнитные моменты доменов и смещаются их границы. Это приводит к изменению энергетического состояния кристаллической решётки и к изменению её межузельных расстояний. Мерой магнитострикции является коэффициент , (18.10)

где Dl – абсолютное удлинение образца, l – его длина.

Если образец сжимается, то Dl и l - отрицательные числа. У чистых металлов хорошо заметна магнитострикция никеля, для которого l = - 3×10-5. У редкоземельного диспрозия l на три порядка больше. Но из-за низкой точки Кюри (87 К) практически не используется. Значения l для некоторых магнитных материалов приведены в таблице 18.3.

Магнитострикция широко применяется в гидролокации. Если обмотку ферромагнетика питать током резонансной частоты, соответствующей размеру и упругости сердечника, то амплитуда колебаний сердечника может достигать заметной величины. В результате получается магнитострикционный излучатель ультразвуковой частоты в десятки и сотни килогерц. Помещённый в воду, такой излучатель создаёт в ней ультразвуковые волны. Отражённые от подводных и надводных объектов и принятые на корабле, они несут информацию о гидрологической обстановке.

8. Магнитные материалы. Чистые ферромагнитные элементы практически не используются. Применяют обычно сплавы и керамики. Из сплавов наиболее применимы электротехнические стали и сплавы на основе железа с добавками. А из керамик – ферриты–кристаллические твёрдые растворы оксида железа Fe2O3 c одним или несколькими оксидами Li, Zn, Ni, Cd, Pb и других металлов.

Индукция поля в ферритах ниже, чем в сплавах и не превышает 0,4 Тл. Но электрическое сопротивление ферритов очень велико и на 3-10 порядков превышает сопротивление сплавов. Поэтому в ферритах практически нет вихревых индукционных токов. Это позволяет использовать ферриты в высокочастотных цепях в качестве сердечников трансформаторов, в импульсных устройствах и т.д.

Характеристики некоторых магнитных материалов приведены в таблице 18.3. В столбце “Состав” в скобках указано весовое процентное содержание вещества в материале. Далее приняты обозначения: ВS – магнитная индукция в состоянии насыщения, ma и mmax – начальная и максимальная магнитная проницаемость, r - электрическое сопротивление, l - коэффициент магнитострикции.

Таблица 18.3

Материал Состав ВS,Тл ma mmax r, Ом×м lS ×106
Сталь электр. Fe + S + C + Mn +P + S + Cu 2,2 240 4 500 10-5 -20
Пермаллой Ni(50) + Fe(50) 1,6 2 000 50 000 5×10-5 -20
Супермаллой Ni(79) + Mo(5) + Fe 0,8 80 000 900 000 6×10-5 -25
Пермендюр Co(49) + V(2) + Fe 2,5 800 4 500 3×10-5 +65
Феррит Ni Zn ZnO(34) + NiO(16) + Fe2O3(50) 0,3 200 7 000 10-5  
Феррит MgMn MgO(25) + MnO(25) + Fe2O3(50) 0,2 60 1 600 10-5  
Феррит Ni Co NiO(1) + CoO(2) + Fe2O3(97)   70 1 000 10-5 -25
Сплав Ф.Гейслера Cu(75) + Mn(14) + Al(10)          

Уравнения Максвелла

1. Гипотеза Максвелла о вихревом электрическом поле. Анализируя явление электромагнитной индукции, Джеймс Максвелл сделал в 60-х годах XIX в. предположение, что причина появления ЭДС индукции состоит в возникновении электрического поля. Это электрическое поле создаётся изменяющимся магнитным полем. При этом проводники играют второстепенную роль. Они являются своеобразными приборами, обнаруживающими это поле. Под действием поля заряды проводимости в проводнике приходят в движение, и если проводник замкнут, в нём возникает индукционный ток.

Электрическое поле, возникающее при электромагнитной индукции, является вихревым. Его силовые линии замкнуты. ЭДС индукции есть ,             (19.1)

где Ф – поток магнитной индукции B через площадку S, ограниченную рассматриваемым контуром (рис.126). В общем случае .                                       (19.2)

Здесь Bn - проекция вектора магнитной индукции B на нормаль n к контуру. С другой стороны, действующая в любом контуре ЭДС может быть представлена как циркуляция вектора электрической напряжённости сторонних сил (см. ф. 8.11).

.                                                                                        (19.3)

Здесь Ест - напряжённость вихревого электрического поля, Еl – проекция вектора Ест на касательную к контуру.

Приравняв правые части выражений (19.2) и (19.3), получаем количественную связь между напряжённостью вихревого электрического поля и скоростью изменения потока.

.                                                                                             (19.4)

Это уравнение обобщает закон электромагнитной индукции Фарадея. В системе уравнений Максвелла в интегральной форме его обычно записывают вторым.

2. Токи смещения. Гипотеза Максвелла о возникновении вихревого электрического поля, из соображений симметрии, приводит к обратному заключению: всякое изменение электрического поля должно вызывать появление вихревого магнитного поля.

Рассмотрим схему, показанную на рис.127. Если включить конденсатор С в цепь, то пока он заряжается, в цепи через лампочку Л будет проходить электрический ток. При изменении переключателем Пк полярности включения конденсатора ток через конденсатор потечёт в обратном направлении до полной перезарядки. Если после каждой перезарядки переключателем Пк менять полярность включения конденсатора, можно заставить лампочку светиться практически непрерывно. Через лампочку течёт пульсирующий ток одного направления, а через конденсатор – ток переменного направления.

Итак, в отличие от постоянных переменные токи могут существовать и в разомкнутых цепях (в конденсаторе разрыв цепи). В проводниках при этом движутся заряды проводимости, а в пространстве между пластинами конденсатора существует лишь переменное электрическое поле. Поскольку в этом поле происходит переменная поляризация диэлектрика, то есть переменное смещение связанных зарядов диэлектрика, Максвелл назвал его током смещения. Можно сказать, что ток проводимости в проводнике замыкается током смещения в диэлектрике.

3. Первое уравнение Максвелла в интегральной форме.

Согласно Максвеллу, переменное электрическое поле в конденсаторе в любой момент времени создаёт такое же магнитное поле, как если бы между обкладками существовал ток проводимости, равный току в проводниках. Иначе, магнитное поле разомкнутого контура такое же, как если бы контур был замкнут. Это предположение позволяет установить количественную связь между изменяющимся электрическим полем и генерируемым им магнитными полем.

Ток в проводнике можно определить как скорость изменения заряда на обкладках конденсатора ,                                                                          (19.5)

где σ – поверхностная плотность зарядов на обкладках площадью S. Разделив на S, получаем плотность тока .                                                                              (19.6)

Если плотность зарядов σ выразить через напряжённость электрического поля в конденсаторе из формулы (7.8), σ = εε0Е, и сохранить векторный характер величин j и Е, то получаем плотность тока смещения .                                                  (19.7)

Переменное во времени электрическое поле создаёт такое же магнитное поле, как и ток проводимости плотностью .

В любой точке проводника может существовать как ток проводимости, так и ток смещения. Поэтому плотность полного тока jS равна их сумме. .                                    (19.8)

Если в проводнике выделить малую площадку S, ограниченную контуром L (рис.128), то по закону полного тока (формула 13.6) можно записать: .  (19.9)

Здесь iS - полный ток, jn - проекция вектора плотности тока проводимости на нормаль к площадке, Еn – проекция вектора напряжённости электрического поля на нормаль к площадке. Поскольку интегрирование выполняется по площади, то есть по координатам, то в подинтегральной функции производная по времени является частной и обозначается ∂.

Интеграл от напряжённости можно преобразовать. С учётом электростатической теоремы Гаусса (формула 4.4) получаем . (19.10)

Здесь N – поток вектора электрической напряжённости через площадку S. Интеграл от плотности тока проводимости даёт ток проводимости i через площадку S: . (19.11)

После подстановки получаем первое уравнение Максвелла . (19.12)

Это уравнение обобщает законы Ампера и Био-Савара-Лапласа.

4. Опыты Роуланда и Эйхенвальда. То, что магнитное поле возникает вокруг проводника с током ещё не означает, что поле создаётся движущимися электрическими зарядами. Не исключалось, что магнитное поле создаёт проводник, переходящий в некое новое качество, когда в нём существует электрический ток. Поэтому было важно на опыте доказать, что магнитное поле создаётся любыми электрическими зарядами, движущимися в любой среде. Тем самым магнитное поле токов смещения из гипотезы превращалась бы в реальный факт.

В 1878 г. в лаборатории Гельмгольца американец Генри Роуланд с целью проверки гипотезы Максвелла поставил следующий опыт. Эбонитовый диск толщиной 0,5 см и диаметром 21 см имел на верхней поверхности кольцеобразный носитель электричества – разрезанное в точках а и в кольцо из золочёной фольги (рис.129, вверху). Диск устанавливался на оси и помещался в заземлённую металлическую коробку (рис.129, внизу). Коробка и кольцевой носитель представляли собой конденсатор, ёмкость которого было нетрудно вычислить или измерить. Если к носителю приложить относительно коробки напряжение U, то, зная ёмкость системы, можно всегда определить заряд q на носителе (Чтобы предотвратить случайное стекание заряда при отключении от источника, заряд q обычно подавался на носитель с острия с расстояния 0,3 мм). Значение q составляло около 10-7 Кл.

Над коробкой помещался магнетоскоп М – подвешенная на тонкой нити маленькая магнитная стрелка с зеркальцем, ориентированная в состоянии покоя касательно диску.

Когда диск вращался с частотой около ν = 60 об/с, движущийся с кольцевым носителем заряд создавал круговой ток. В результате магнитная стрелка отклонялась, что говорило о появлении магнитного поля.

Количественная проверка состояла в следующем. Диск останавливался, к точкам а и в носителя подключались проводники, и через кольцевой носитель пропускался такой ток проводимости, при котором магнитная стрелка отклонялась на ту же величину.

Сравнение конвективного тока i = q ν, обусловленного вращением носителя, с током проводимости показало, что токи совпадают.

Опыты Роуланда повторялись с разными результатами и другими исследователями, пока в 1901 – 1904 г.г. русский физик Александр Эйхенвальд окончательно не доказал, что все наблюдаемые в экспериментах токи – проводимости, конвективные и токи смещения – всегда образуют собой замкнутые цепи и генерируют магнитные поля.

5. Система уравнений Максвелла в интегральной форме. Всё содержание теории электромагнетизма может быть сконцентрировано в группе математических соотношений, полученных Максвеллом в 60-х годах XIX в. на основе обобщения эмпирических законов электрических и магнитных явлений.

1-е уравнение.

.

Закон полного тока (Закон Ампера). (19.13)
2-е уравнение.

.

Закон электромагнитной индукции

(19.14)
3-е уравнение. .

Закон Кулона в форме теоремы Гаусса (см. ф. 6.9).

(19.15)
4-е уравнение. .

Закон отсутствия в природе магнитных зарядов.

(19.16)
           

Эти 4 уравнения называются уравнениями поля.

Полная система уравнений, описывающих поля и заряды, включает в себя кроме уравнений поля выражения для сил, действующих на заряды (14.12), и законы динамики Ньютона, описывающие движение носителей зарядов под действием этих сил.

Взаимодействие полей с материальными средами описывается с помощью макроскопических параметров ε, μ, g, значения которых могут быть в первом приближении вычислены в рамках моделей микроскопической электродинамики. Электромагнитные явления в области атомных размеров и внутри самих атомов и молекул могут быть описаны только с помощью квантовой электродинамики.

6. Значение системы уравнений Максвелла.

Уравнения Максвелла описывают огромную область явлений. Они лежат в основе электротехники и радиотехники, играют важнейшую роль в таких разделах физики как управляемый термоядерный синтез, физика плазмы, магнитогидродинамика, нелинейная оптика, астрофизика и др. Уравнения Максвелла неприменимы лишь при больших частотах электромагнитных колебаний, когда становятся заметными квантовые эффекты.

В конце XIX – начале XX в.в. Хендрик Лоренц построил классическую электронную теорию вещества, иначе, микроскопическую электродинамику. В этой теории вещество рассматривается как совокупность электрически заряженных частиц – электронов и атомных ядер, движущихся в вакууме. См., напр., теорию проводимости Друде-Лоренца, с.___. Преобразовав макроскопические уравнения Максвелла к микроскопическим полям, Лоренц получил систему уравнений, описывающих поля в любой момент времени и в любой точке пространства, в том числе между атомами и внутри атомов. Эти уравнения называют уравнениями Максвелла-Лоренца.

Электронная теория Лоренца позволяет выяснить физический смысл материальных констант, входящих в уравнения Максвелла - ε, μ, g. В вакууме уравнения Лоренца совпадают с уравнениями Максвелла.

На очень малых пространственно-временных интервалах законы классической электронной теории не выполняются. Она уступает место квантовой теории электромагнитных процессов – квантовой электродинамике. Если в классической электронной теории электромагнитное поле считается непрерывным, то в квантовой электродинамике оно дискретно и состоит из квантов энергии – фотонов.


Дата добавления: 2018-04-15; просмотров: 1488; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!