Задача с несколькими выходными данными. Параметр парной корреляции



Задачи с одним выходным параметром имеют очевидные преимущества. Но на

практике чаще всего приходится учитывать несколько выходных параметров. Иногда их число довольно велико. Так, например, при производстве резиновых и пластмассовых изделий приходится учитывать физико-механические, технологические, экономические, художественно-эстетические и другие параметры. Математические модели можно построить для каждого из параметров, но одновременно оптимизировать несколько функций невозможно.

Обычно оптимизируется одна функция, наиболее важная с точки зрения исследования, при ограничениях, налагаемых другими функциями. Поэтому из многих выходных параметров выбирается один в качестве параметра оптимизации, а остальные служат ограничениями. Всегда полезно исследовать возможность уменьшения числа выходных параметров. Для этого можно воспользоваться корреляционным анализом.

При этом между всевозможными парами параметров необходимо вычислить коэффициент парной корреляции, который является общепринятой в математической статистике характеристикой связи между двумя случайными величинами. Если обозначить один параметр через у1 , а другой – через у2 , и число опытов, в которых они будут измеряться, - через N так, что u=1,2,…,N, где u – текущий номер опыта, то коэффициент парной корреляции r вычисляется по формуле

 

средние арифметические соответственно для у1 и у2.

Значения коэффициента парной корреляции могут лежать в пределах от –1 до +1. Если с ростом значения одного параметра возрастает значение другого, у коэффициента будет знак плюс, а если уменьшается, то минус. Чем ближе найденное значение r к единице, тем сильнее значение одного параметра зависит от того, какое значение принимает другой, т.е. между такими параметрами существует линейная связь, и при изучении процесса можно рассматривать только один из них. Необходимо помнить, что коэффициент парной корреляции как мера тесноты связи имеет четкий математический смысл только при линейной зависимости между параметрами и в случае их нормального распределения.

Для проверки значимости коэффициента парной корреляции нужно сравнить его

значение с табличным (критическим) значением r, которое приведено в прил. 6. Для

пользования этой таблицей нужно знать число степеней свободы f = N − 2 и выбрать

определенный уровень значимости, например, равный 0,05. Такое значение уровня

значимости соответствует вероятности верного ответа при проверке гипотезы

p = 1− a = 1− 0,05 = 0,95, или 95%. Это значит, что в среднем только в 5% случаев

возможна ошибка при проверке гипотезы.

Если экспериментально найденное значение r больше или равно критическому, то

гипотеза о корреляционной линейной связи подтверждается, а если меньше, то нет

оснований считать, что имеется тесная линейная связь между параметрами.

При высокой значимости коэффициента корреляции любой из двух анализируемых

параметров можно исключить из рассмотрения как не содержащий дополнительной

информации об объекте исследования. Исключить можно тот параметр, который труднее измерить, или тот, физический смысл которого менее ясен.

Парная корреляция – это связь между двумя показателями, один из которых является факторным, а другой – результативным.

Множественная корреляция возникает от взаимодействия нескольких факторов с результативным показателем.

Формы проявления корреляционной связи между признаками:

1) причинная зависимостьрезультативного признака от вариации факторного признака;

2) корреляционная связь между двумя следствиями общей причины. Здесь корреляцию нельзя интерпретировать как связь причины и следствия. Оба признака - следствие одной общей причины;

3) взаимосвязь признаков, каждый из которых и причина, и следствие. Каждый признак может выступать как в роли независимой переменной, так и в качестве зависимой переменной.

 

Корреляционные параметрические методы - методы оценки тесноты свози, основанные на использовании, как правило, оценок нормального распределения, применяются в тех случаях, когда изучаемая совокупность состоит из величин, которые подчиняются закону нормального распределения.

 

Корреляция для нелинейной регрессииУравнение нелинейной регрессии, так же как и в линейной зависимости, дополняется показателем корреляции, а именно - индексом корреляции (R):

где - общая дисперсия результативного признака у, - остаточная дисперсия, определяемая исходя из уравнения регрессии : ух = f (х). Корреляция для множественной регрессии.Значимость уравнения множественной регрессии оценивается с помощью показателя множественной корреляции и его квадрата - коэффициента детерминации. Показатель множественной корреляции характеризует тесноту связи рассматриваемого набора факторов с исследуемым признаком, или оце­нивает тесноту совместного влияния факторов на результат. Независимо от формы связи показатель множественной корреляции может быть найден как индекс множественной корреляции:

где - общая дисперсия результативного признака;

- остаточная дисперсия для уравнения

у = f (x1,x2,…,xp)

 

 


Дата добавления: 2018-04-04; просмотров: 436; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!