Основные понятия и определения 3 страница



Под интегральной функцией распределения результатов наблюдений понимается зависимость вероятности того, что результат наблюдения в i-м опыте окажется меньшим некоторого текущего значения х, от самой величины х:

(3.4)

Здесь и в дальнейшем большие буквы используются для обозначения случайных величин, а маленькие - значений, принимаемых случайными величинами. Поскольку функция распределения вероятности представляет собой вероятность, то она удовлетворяет следующим свойствам:

На рисунке 3.1 показаны примеры функций распределения вероятности.

Рис. 3.1.

Более наглядным является описание свойств результатов наблюдений и случайных погрешностей с помощью дифференциальной функции распределения, иначе называемой плотностью распределения вероятностей:

                                          (3.5)

Физический смысл f(x) состоит в том, что произведение f(x)dx представляет вероятность попадания случайной величины Х в интервал от х до х + x , т.е.

                                                    

Свойства плотности распределения вероятности:

-вероятность достоверного события равна 1;иными словами, площадь, заключенная между кривой дифференциальной функции распределения и осью абсцисс, равна единице;

- вероятность попадания случайной величины в интервал от до .

От дифференциальной функции распределения легко перейти к интегральной путем интегрирования:

                                       (3.6)

Размерность плотности распределения вероятностей, как это следует из формулы, обратна размерности измеряемой величины, поскольку сама вероятность - величина безразмерная.

Используя понятия функций распределения, легко получить выражения для вероятностей того, что результат наблюдений Х или случайная погрешность примет при проведении измерения некоторое значение в интервале или .

В терминах интегральной функции распределения имеем:

т.е. вероятность попадания результата наблюдений или случайной погрешности в заданный интервал равна разности значений функции распределения на границах этого интервала.

Заменяя в полученных формулах интегральные функции распределения на соответствующие плотности распределения вероятностей согласно выражению, получим формулы для искомой вероятности в терминах дифференциальной функции распределения:

           

                     

Таким образом, вероятность попадания результата наблюдения или случайной погрешности в заданный полуоткрытый интервал равна площади, ограниченной кривой распределения, осью абсцисс и перпендикулярами к ней на границах этого интервала. Необходимо отметить, что результаты наблюдений в значительной степени сконцентрированы вокруг истинного значения измеряемой величины и по мере приближения к нему элементы вероятности их появления возрастают. Это дает основание принять за оценку истинного значения измеряемой величины координату центра тяжести фигуры, образованной осью абсцисс и кривой распределения, и называемую математическим ожиданием результатов наблюдений:

                                    (3.7)

В заключение можно дать более строгое определение постоянной систематической и случайной погрешностей.

Систематической постоянной погрешностью называется отклонение математического ожидания результатов наблюдений от истинного значения измеряемой величины:

                                               (3.8)

а случайной погрешностью - разность между результатом единичного наблюдения и математическим ожиданием результатов

                                                (3.9)

В этих обозначениях истинное значение измеряемой величины составляет

                                           (3.10)

Виды распределения результатов наблюдения и случайных погрешностей

Случайная погрешность измерения образуется под влиянием большого числа факторов, сопутствующих процессу измерения. В каждой конкретной ситуации работает свой механизм образования погрешности. Поэтому естественно предположить, что каждой ситуации должен соответствовать свой тип распределения погрешности. Однако во многих случаях имеются возможности еще до проведения измерений сделать некоторые предположения о форме функции распределения, так что после проведения измерений остается только определить значения некоторых параметров, входящих в выражение для предполагаемой функции распределения.

Случайная погрешность характеризует неопределенность наших знаний об истинном значении измеряемой величины, полученных в результате проведенных наблюдений. Согласно К. Шеннону мерой неопределенности ситуации, описываемой случайной величиной X, является энтропия:

                                              (4.1)

являющаяся функционалом дифференциальной функции распределения . Можно предположить, что любой процесс измерения формируется таким образом, что неопределенность результата наблюдений оказывается наибольшей в некоторых пределах, определяемых допускаемыми значениями погрешности. Поэтому наиболее вероятными должны быть такие распределения , при которых энтропия обращается в максимум.

Для выявления вида наиболее вероятных распределений рассмотрим несколько наиболее типичных случаев.

1. В классе распределений результатов наблюдений , обладающих определенной зоной рассеивания между значениями х = b и х = а шириной b-а=2а, найдем такое, которое обращает в максимум энтропию при наличии ограничивающих условий:

   , , , где - математическое ожидание результатов наблюдений. Решение поставленной задачи находится методом множителей Лагранжа.

Искомая плотность распределения результатов наблюдений описывается выражением

Такое распределение результатов наблюдений называется равномерным.

Значения дифференциальной функции распределения равномерной распределенной случайной погрешности постоянны в интервале [- а; + а], а вне этого интервала равны нулю (см рисунок 4.1).

Рис. 4.1

Поэтому выражение для дифференциальной функции распределения случайной погрешности можно записать в виде

Определим числовые характеристики равномерного распределения. Математическое ожидание случайной погрешности находим по формуле:

(4.2)

 

 

Дисперсию случайной равномерно распределенной погрешности можно найти по формуле:

(4.3)

В силу симметрии распределения относительно математического ожидания коэффициент асимметрии должен равняться нулю

                          (4.4)

Для определения эксцесса найдем вначале четвертый момент случайной погрешности:

                        (4.5)

поэтому

                          

В заключение найдем вероятность попадания случайной погрешности в заданный интервал [ ], равный заштрихованной площади на рисунке.

2. В классе распределений результатов наблюдений , обладающих определенной дисперсией , найдем такое, которое обращает в максимум энтропию при наличии ограничений:

, , , .

Решение этой задачи также находится методом множителей Лагранжа. Искомая плотность распределения результатов наблюдений описывается выражением

                                           (4.6)

где - математическое ожидание и - среднеквадратическое отклонение результатов наблюдений.

Учитывая, что при полном исключении систематических погрешностей и , для дифференциальной функции распределения случайной погрешности можно записать уравнение

                                                 (4.7)

Распределение, описываемое этими уравнениями, называется нормальным или распределением Гаусса.

На рисунке изображены кривые нормального распределения случайных погрешностей для различных значений среднеквадратического отклонения .

                                      

Из рисунка видно, что по мере увеличения среднеквадратического отклонения распределение все более и более расплывается, вероятность появления больших значений погрешностей возрастает, а вероятность меньших погрешностей сокращается, т.е. увеличивается рассеивание результатов наблюдений.

Продолжение Л.4

Вычислим вероятность попадания результата наблюдения в некоторый заданный интервал :

               

Заменим переменные:

после чего получим следующее выражение для искомой вероятности:

Интегралы, стоящие в квадратных скобках, не выражаются в элементарных функциях, поэтому их вычисляют с помощью так называемого нормированного нормального распределения с дифференциальной функцией

Далее приведены значения дифференциальной функции нормированного нормального распределения, а также интегральной функции этого распределения, определяемой как

С помощью функции Ф(z) вероятность находят как

При использовании данной формулы следует иметь в виду тождество

вытекающее непосредственно из определения функции Ф(z).

Широкое распространение нормального распределения погрешностей в практике измерений объясняется центральной предельной теоремой теории вероятностей, являющейся одной из самых замечательных математических теорем, в разработке которой принимали участие многие крупнейшие математики - Муавр, Лаплас, Гаусс, Чебышев и Ляпунов. Центральная предельная теорема утверждает, что распределение случайных погрешностей будет близко в нормальному всякий раз, когда результаты наблюдения формируются под влиянием большого числа независимо действующих факторов, каждый из которых оказывает лишь незначительное действие по сравнению с суммарным действием всех остальных.

1. Предположим, что результаты наблюдений распределены нормально, но их среднеквадратическое отклонение является величиной случайной, изменяющейся от опыта к опыту. Такое предположение более осторожное, чем предположение о неизменности в течение всего времени измерений. В этом случае, рассуждая таким же образом, как и прежде, легко найти, что энтропия обращается в максимум, если результаты наблюдений имеют распределение Лапласа с плотностью

                                   (5.1)

где - математическое ожидание, - среднеквадратическое отклонение результатов наблюдения. Распределением Лапласа следует пользоваться в тех случаях, когда точностные характеристики заранее неизвестны или нестабильны во времени.

Дифференциальная функция распределения случайных погрешностей получается подстановкой и в предыдущее выражение:

                                  

Асимметрия распределения равна нулю, поскольку распределение симметрично относительно нуля, а эксцесс составляет:

                       (5.2)

Таким образом, по сравнению с нормальным распределением (Ех = 0) равномерное распределение является более плосковершинным (Ех = -1.2), а распределение Лапласа - более островершинным (Ех=3).

Оценка с помощью интервалов

Смысл оценки параметров с помощью интервалов заключается в нахождении интервалов, называемых доверительными, между границами которых с определенными вероятностями (доверительными) находятся истинные значения оцениваемых параметров.

Вначале остановимся на определении доверительного интервала для среднего арифметического значения измеряемой величины. Предположим, что распределение результатов наблюдений нормально и известна дисперсия . Найдем вероятность попадания результата наблюдений в интервал . Согласно формуле:

Но

и, если систематические погрешности исключены ,


Дата добавления: 2018-02-28; просмотров: 264; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!