Электронная теория электропроводности металлов. Дифференциальная форма Ома и Джоуля Ленца. Закон Ома и Джоуля-Ленца в электронной теории.



Исходя из представлений о свободных электронах, Друде разработал классическую теорию электропроводности металлов, которая затем была усовершенствована Лоренцем. Друде предположил, что электроны проводимости в металле ведут себя подобно молекулам идеального газа. В промежутках между соударениями они движутся совершено свободно, пробегая в среднем некоторый путь . Правда в отличие от молекул газа, пробег которых определяется соударениями молекул друг с другом, электроны сталкиваются преимущественно не между собой, а с ионами, образующими кристаллическую решетку металла. Эти столкновения приводят к установлению теплового равновесия между электронным газом и кристаллической решеткой. Полагая, что на электронный газ могут быть распространены результаты кинетической теории газов, оценку средней скорости теплового движения электронов можно произвести по формуле . Для комнатной температуры ( 300К) вычисление по этой формуле приводит к следующему значению: . При включении поля на хаотическое тепловое движение, происходящее, со скоростью , накладывается упорядоченное движение электронов с некоторой средней скоростью . Величину этой скорости легко оценить, исходя из формулы, связывающей плотность тока j с числом n носителей в единице объема, их зарядом е и средней скоростью :

Предельная допустимая техническими нормами плотность тока для медных проводов составляет около 10 А/мм2 = 107 А/м2. Взяв для n=1029 м-3, получим

Таким образом, даже при больших плотностях тока средняя скорость упорядоченного движения зарядов в 108раз меньше средней скорости теплового движения .

Дифференциальная форма закона Ома. Закон Ома в интегральной форме для однородного участка цепи (не содержащего ЭДС)

Для однородного линейного проводника выразим R через ρ: , ρ – удельное объемное сопротивление; [ρ] = [Ом·м].

Найдем связь между и в бесконечно малом объеме проводника – закон Ома в дифференциальной форме.

В изотропном проводнике (в данном случае с постоянным сопротивлением) носители зарядов движутся в направлении действия силы, т.е. вектор плотности тока и вектор напряженности поля коллинеарны.

Исходя из закона Ома (7.6.1), имеем:

А мы знаем, что или . Отсюда можно записать

       

это запись закона Ома в дифференциальной форме. Здесь удельная электропроводность. Размерность σ – [ ].


Дата добавления: 2016-01-05; просмотров: 21; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!