Основные характеристики звезд 9 страница



Поскольку радиус Солнца на два порядка больше этой величины, ясно, что при подлете к Солнцу космонавту угрожали бы совсем не приливные силы. Опасными факторами будут высокая температура, жесткое излучение и т.п.

5.17 На первый взгляд, должно выполняться следующее условие: сила притяжения спутника к астероиду должна превосходить силу притяжения его к Солнцу. Условие равенства двух сил записывается в виде

где M -- масса астероида, r -- гелиоцентрическое расстояние астероида, d -- искомое расстояние между астероидом и его спутником. Масса 100-километрового астероида (при плотности 2 г/см3) составляет г. Поэтому . Полагая r = 3 а.е. км, находим км.

Однако если те же рассуждения применить не к спутнику астероида, а к спутнику Земли, максимальное расстояние окажется равным 260000 км (см. задачу ). Луна находится на значительно большем расстоянии! Парадокс легко разрешается: на самом деле надо рассматривать не ускорение, сообщаемое спутнику Солнцем, а разность ускорений, сообщаемых спутнику и телу, вокруг которого он движется. Эта разность, как легко показать, не превосходит величины (ср. решение предыдущей задачи), и потому уравнение для определения d имеет вид

откуда

С теми же числовыми значениями получаем для нашего двойного астероида км.

Вам, может быть, интересно будет знать, каков же на самом деле минимальный радиус круговой орбиты спутника, при котором он может покинуть астероид и начать двигаться по гелиоцентрической орбите. Его определение -- это непростая задача даже для профессионалов - небесных механиков. Соответствующий радиус , где

называется радиусом Хилла. Как видно, наша оценка совсем неплоха.

Ида и ее спутник Дактил

А теперь -- от сухой теории к живой сегодняшней астрономии. Космический зонд "Галилей" на своем пути к Юпитеру испытал сближение с астероидом Ида и передал его изображение. Неожиданно обнаружилось, что у Иды есть миниатюрный спутник. Изображение Иды с ее спутником см. также в Интернете по адресу http://galileo.ivv.nasa.gov/idamoon.html

5.18 Обозначим через и массы Земли и Солнца, через a -- расстояние между ними. Введем систему координат, как показано на рисунке внизу.

Ясно, что искомая поверхность обладает осевой симметрией относительно оси абсцисс. Поэтому достаточно найти сечение поверхности плоскостью XY, т.е. уравнение плоской кривой вида f(x,y)=0.

Записывая условие равенства сил притяжения к Солнцу и к Земле

и учитывая, что

после несложных преобразований получаем уравнение сферы тяготения:

Таким образом, сфера тяготения -- это действительно сфера. Ее радиус равен

а центр смещен по оси x от центра Земли в противосолнечном направлении на расстояние

Численно, км. Орбита Луны лежит на существенно большем расстоянии, так что Солнце притягивает Луну сильнее, чем Земля -- известный парадокс,
см. задачи и . Далее, км, так что центр сферы лежит внутри Земли.

Плоскостью (проходящей точно посередине между Землей и Солнцем и перпендикулярной к линии Земля -- Солнце) сфера тяготения была бы, если бы масса Земли равнялась солнечной.

5.19 В задаче имеются две очевидные размерные величины, R и M. Третьей, фигурирующей в задаче неявно, размерной величиной, которая также должна входить в решение, является постоянная тяготения G -- ведь движение происходит в ньютоновском гравитационном поле. Из этих трех величин "сконструировать" величину с размерностью времени проще всего так.

Условимся через [Q] обозначать размерность величины Q. Размерность постоянной тяготения G найдем, воспользовавшись законом всемирного тяготения , откуда [сила]=[G2/см2, или, так как [сила]=[масса] [ускорение], то

Теперь ясно, что . Поэтому, обозначив через искомое время свободного падения до поверхности тела (индекс s -- от surface), мы найдем, что величина

является безразмерной. Природа устроена так, что безразмерные комбинации определяющих параметров обычно являются числами порядка единицы. Неопределенное слово "обычно" означает здесь, что мы не находимся "рядом" с сингулярностью того или иного рода. Вероятно, эти слова покажутся читателю не вполне вразумительными -- но их полезно запомнить. Со временем вы научитесь чувствовать, что они значат.

Итак, первая (более легкая) часть задачи решена. Переходим ко второй части -- получению оценки . По закону сохранения энергии, у падающей материальной точки единичной массы ("камня") сумма ее кинетической и (отрицательной) потенциальной энергии -GM/r должна оставаться постоянной. Значение этой постоянной найдем, заметив, что в начальный момент камень покоится, а потому его кинетическая энергия равна нулю, потенциальная же равна -GM/(2R). Поэтому

В момент падения на поверхность, т.е. при r=R, скорость камня оказывается равной

Такую же скорость имеет спутник, летящий по круговой орбите непосредственно над поверхностью планеты (первая космическая, или круговая скорость).

Чтобы оценить время свободного падения, поступим следующим образом. Представим себе, что наш "камень" падает с расстояния 2R не на планету массы M и радиуса R, а на притягивающий центр, в котором сосредоточена точечная масса M. Тогда падение камня на этот центр можно рассматривать как вырожденный случай движения по эллипсу (с эксцентриситетом e=1 и полуосью a=R). Удвоенное время падения есть период полного оборота по такой прямолинейной орбите. По третьему закону Кеплера, он равен периоду оборота спутника, движущегося по круговой орбите на расстоянии r=R от притягивающего центра -- полуоси у двух орбит одинаковы. Отсюда находим, что время падения на центр (индекс c -- от center) с расстояния 2R равно

Ясно, что больше искомого времени падения до поверхности планеты, но ненамного, так как вторую половину пути камень пролетает, принимая "промежуточный старт" при r=R с большой начальной скоростью , а не с нулевой, как в начале движения с r=2R. Поэтому, оценивая время прохождения второй половины пути, мы ищем малую поправку, которую надо вычесть из для получения . Даже найдя эту поправку не очень точно, мы получим неплохую оценку величины .

Допустим на время, что с расстояния R падение на притягивающий центр происходит с постоянным ускорением

и начальной скоростью . На самом деле при падении на притягивающий центр ускорение растет со временем, и поэтому истинная скорость будет выше, чем при равноускоренном движении, а значит, время падения меньше. Отсюда и будет следовать оценка . Путь R в равноускоренном движении с ускорением и начальной скоростью проходится за время такое, что

Из этого квадратного уравнения можем найти . Будем действовать не в лоб, а попробуем на нашем очень простом примере показать, что значит вести расчеты грамотно.

Вспомним те соображения о размерностях, с которых мы начинали решение задачи. Они подсказывают целесообразность введения вместо размерного времени t безразмерной переменной такой, что

Верхнему пределу изменения , т.е. , соответствует . Введем также безразмерное расстояние

В этих естественных для рассматриваемой задачи безразмерных переменных квадратное уравнение для нахождения принимает вид

где -- безразмерное время , соответствующее . Из этого уравнения находим, что

Второй корень не подходит -- он отрицателен, а время у нас отсчитывается от начала движения и потому отрицательным быть не может. Обозначим истинное безразмерное время прохождения второй половины пути камнем, падающим с r=2R, через (индекс t -- от true). Ясно, что , а потому для безразмерного времени падения камня с r=2R до r=R, которое в условии задачи было обозначено через , находим

Это даже несколько более сильная оценка, чем нам требовалось получить .

Точное значение есть

См. об этом следующую задачу.

5.20 Ответ: По баллистике получается .

Решение: Найдем сначала наибольшую высоту, на которую поднимется ракета. Начальная скорость, по условию, равна первой космической:

где M и R -- масса и радиус Земли. Расстояние верхней точки траектории от центра Земли можно найти из того условия, что кинетическая энергия ракеты на старте оказывается к моменту ее остановки израсходованной на увеличение потенциальной энергии:

Из двух написанных формул следует, что , так что ракета, вертикально запущенная с первой космической скоростью, поднимается над поверхностью на высоту, равную радиусу тела, с которого ее запускали, в нашей "батальной" истории -- Земли.

Если бы вся масса Земли была сосредоточена в ее центре, то падающая ракета достигла бы этого притягивающего центра, облетела его и мгновенно полетела бы назад. Она стала бы совершать периодическое движение по отрезку длины 2R, который можно рассматривать как вырожденный эллипс с эксцентриситетом e=1. Верхняя точка, которой достигает ракета, -- это афелий, или точнее апогей этой орбиты. Здесь происходит остановка, после чего начинается падение на притягивающий центр. Скорость монотонно возрастает от нуля при r=2R до км/с при r=R и, продолжая расти, становится (формально) бесконечной, когда достигается притягивающий центр. Ясно, что для решения задачи надо найти время свободного падения с высоты до r=R. Удвоив его, получим полное время полета ракеты от ее запуска до поражения цели.

Если вы немного знаете небесную механику, нахождение этого времени труда не составит. Достаточно вспомнить геометрический смысл эксцентрической аномалии E и сообразить, что в момент, когда ракета поражает цель, . Применив уравнение Кеплера с e=1, найдем среднюю аномалию:

Поэтому время полета от апогея до поверхности Земли равно

а время полета от запуска до цели составит

Дадим теперь другое решение, не требующее знания уравнения Кеплера и понятий "эксцентрическая" и "средняя аномалии". Впрочем, фактически они появятся и в этом решении. Прежде всего заметим, что полный период движения по прямолинейному отрезку длины 2R (рассматриваемому как эллипс с полуосью a=R и эксцентриситетом e=1) равен времени облета Земли на низколетящем спутнике (та же полуось, но e=0), т.е. составляет гагаринские полтора часа. Более точное значение таково:

Ясно, что, падая на центр и медленно разгоняясь, тело будет находиться на расстоянии r>R большую часть этого времени. Вторая половина пути (r<R) должна преодолеваться гораздо быстрее первой, так как скорость тут уже велика. Если бы весь путь проходился с постоянной скоростью, то запуск надо было бы произвести за минуты до момента падения. Пока наши рассуждения дали очень грубую оценку времени запуска ракеты: где-то между и (вероятно, все же ближе к первому числу, чем ко второму). Если бы было известно, что вражеская подлодка проведет на полюсе хотя бы час, больше ничего считать было бы не нужно.

[Фактически в предыдущей задаче мы уже довольно подробно разбирали вопрос об оценке интересующего нас времени полета ракеты. Если воспользоваться полученным там результатом, то можно заключить, что пуск ракеты надо произвести между и . Увы, временная вилка все еще слишком велика для нас. Придется решать задачу точно.]

Будем исходить из интеграла энергии

Введем безразмерное расстояние

и безразмерное время

Тогда

Это естественные для разбираемой задачи переменные (см. предыдущую задачу). В этих переменных интеграл энергии принимает вид

Будем отсчитывать время от момента прохождения "перигея" (т.е. от момента пролета мимо точечной массы), так что x=0 при . Тогда из последнего соотношения находим

Этой формулой определяется закон движения по прямолинейной орбите: по заданному в принципе можно (хотя и не в явном виде) найти соответствующее ему x, т.е. расстояние движущегося тела от притягивающего центра. Фактически полученное только что уравнение, связывающее x и , есть записанное в хорошо "зашифрованном" виде уравнение Кеплера при e=1. Точнее говоря, как мы сейчас увидим, оно эквивалентно ему.


Дата добавления: 2021-07-19; просмотров: 62; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!